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SUMMARY

This is a final report on the tasks supported by NASA Langley Research Center under
Grant NAG1-756, Computational Methods and Software Systems for Dynamics
and Control of Large Space Structures. The report covers progress to date, projected
developments in the final months of the grant and conclusions. Pertinent reports and
papers that have not appeared in scientific journals (or have not yet appeared in final
form) are enclosed.

The grant has supported research in two key areas of crucial importance to the
computer-based simulation of large space structure. The first area involves multibody
dynamics (MBD) of flexible space structures, with applications directed to deployment,
construction and maneuvering. The second area deals with advanced software systems,
with emphasis on parallel processing. The latest research thrust in the second area, as

reported here, involves massively parallel computers.



Task 1: MULTIBODY DYNAMICS
Background

This is a continuing research task that began in June 1986 and has progressed steadily

over the past three years. The work has emphasized the following research components:

(1) Formulation of flexible multibody dynamics in a computationally oriented context.

(2) Formulation, implementation and evaluation of flexible three-dimensional beam el-
ements capable of arbitrary motions and implementable in energy-conserving time

integration methods.
(3) Development of a library of joint constraints to connect beam elements.

(4) Development, formulation and evaluation of energy-conserving time integration proce-
dures, with emphasis on explicit-implicit partitioned solution algorithms for treating

translational, rotational and constraint degrees of freedom in a staggered manner.

(5) Parallel implementation of multibody dynamics, including interconnection topology
analysis and direct time integration.

(6) Completion of joint constraint library with contact-impact effects.

Over the past year work has concentrated on areas (4), (5) and (6). The principal investi-
gator in areas (1) through (5) is Professor K. C. Park, whereas area (6) is jointly supervised
by Professors Park and Felippa. Three doctoral students have carried out research in these
areas: Jin-Chern Chiou (fully supported by this grant), Janice Downer (supported by a
NASA fellowship) and Horacio de la Fuente (partly supported by this grant).

Following is a summary of accomplishments in areas (4) through (6), which are treated

more fully in the enclosed reports (References 1-5).

Staggered Solution Procedures for MBD

An efficient staggered solution procedure for treating MBD systems has been developed,
tested and implemented. The MBD equations of motion are partitioned so that the con-
straint forces appear as independent variables that can be integrated in time, separately
from the mechanical variables. The latter are in turn partitioned into translational and
rotational variables. The resulting partitioned equations of motion are integrated by a
two-stage stabilized algorithm for updating both the translational coordinates and the
angular velocities. Details of this procedure are given in Ref. 1, included in this report.
The application of these procedure to simulation of flexible MBD systems composed of

three-dimensional beams is described in Ref. 2, which is also included in this report.

MBD Topology Analysis for Parallel Implementation
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A parallel partitioning scheme based on physical coordinate variables was developed to
eliminate constraint forces and yield the MBD equation of motion in terms of independent
coordinates. This scheme features an explicit determination of independent coordinates
and the parallel computation of the null space of the constrained Jacobian matrix. This

work is described in Ref. 3, which is included in the present report.

Parallel Direct Time Integration of MBD

Using the topological analysis developed under the previous task, a two-stage staggered
algorithm for parallel computations has been developed, implemented and tested on a
shared-memory parallel computer. The solution scheme features a new Schur-complement-
based parallel preconditioned CG algorithm. This solution scheme is a “spin out”. This
work is described in Ref. 3.

Development of Contact-Impact Algorithms

This task began in May 1990 because of delayed funding and is in progress at the time of
writing. Contact impact is represented by a fictitious, time-varying penalty spring that is

designed to absorb the impulse of the contacting bodies in the form of a *

‘penalty spring
energy”. This energy is released totally or partially on separation (partial release is used
to model dissipation effects) and eventually the spring disappears. This new technique
offers implementation advantages in that it can be easily accommodated in a variable
step explicit time integration and this appears well suited to implementation on massively
parallel computers. Preliminary results on simple impact problems are encouraging as

regards general physical behavior as well as energy conserving characteristics.

Task 2: FINITE ELEMENT COMPUTATIONS ON
A MASSIVELY PARALLEL COMPUTER

Background

This task represents the final phase of the software systems thrust. It was started in
July 1989. The principle investigators are Professors C. Farhat and C.A. Felippa. Post-
doc Research Associate E. Pramono has presently worked full-time on this project, which
has also supported a graduate student (L. Crivelli) half-time. The main objective is the
evaluation of the suitability of the Connection-Machine 2 (CM-2), a massively parallel

computer, for large-scale finite element computations with emphasis on static analysis.

This work did not begin from scratch, but has substantially benefited from prior efforts.
Investigation of the potential of the CM-2 for explicit dynamic calculations began in 1987
under NRL funding. This work involved Professors Farhat and K.C. Park, and post-doc
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Research Associate N. Sobh. Work was carried out on the CM-2 computer at NRL, which
is a half configuration of 32768 processors. The results of this study are presented in an
enclosed report (Ref. 6), which is to appear shortly in International Journal of Numerical

Methods in Engineering. Portions of that work have appeared in Ref. 7, which is also
included.

In 1988 DARPA donated a small CM-2 (8192 processors) to the University of Colorado.
The machine is presently installed at the National Center for Atmospheric Research
(NCAR) and connected to the Campus Unix network. Although only one eighth of a full
configuration, the increased availability and our deployment of real-time on-line graphics
have substantially improved our ability to develop and test software. The CM-2 is not
an easy machine to program because of its unconventional nature and the initial support
of only two major programming languages with parallel constructions: CM-Lisp and C*.
Virtually all programming has been done in C*, which is an object oriented superset of C
and C++.

In August 1989 Dr. Sobh left us to take a faculty position at Old Dominion University.
Dr. Pramono, whose prior experience in parallel processing had been on shared memory
machines (especially Cray 2, Alliant and Convex using the Force Preprocessor) had to take

over and gradually became an expert on the Connection Machine over the past six months.

Progress
Our work on the CM-2 to date has concentrated on the following software modules.

Decomposer. A general-purpose finite element model decomposer, described in Ref. 3,
that takes as input an arbitrary mesh description, and produces a set of finite element
data structures that can be loaded within one generic CM-2 chip.

Mapper. A general purpose mapper that assigns each of the data structures produced by
the decomposer to a well defined chip. The goal of this allocation strategy is to reduce the

distance that information has to travel between neighboring finite elements.

Residual Evaluator. This is a computational kernel that controls the direct calculation of
element residuals, where “direct” means that no element stiffness matrices are evaluated.
This kernel interacts with both a transient dynamics algorithm based on Central Difference,

as well as an iterative solver based on Jacobi-Preconditioned Conjugate Gradients.

Element Library. This includes a 3D 2-node truss, a 3D 2-node beam, a 3D 8-node brick,
a 2D 4-node quadrilateral and a 4-node ANS shell element. The shell element has been
the latest one incorporated in this library, and testing was completed during May 1990.
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Visualization. A parallel visualization kernel that operates in real time and which displays
both wire frame representations of the initial and deformed mesh and shaded contour-value

finite element plots as they are being computed.

Parallel I/0 Manager. A kernel used to archive the computed results on the CM-2 data

vault. It is based on the Parallel I/O Manager written by E. Pramono and described in
Ref. 8.

These software modules together comprise a massively parallel prototype finite element

code that effectively embeds MIMD computations on a SIMD hardware architecture.

Conclusions

Preliminary results using the prototype code with emphasis on truss and frame structures
are reported in References 6 through 10. In general, it has been found that this highly par-
allel processor can outperform vector supercomputers such as the Cray family on explicit

computations but not on implicit ones.

Several features distinguish the CM-2 from earlier SIMD hypercubes. On the hardware side
we note the impressive number of crunching power and the fast parallel I/O capabilities.
On the software side we note the virtual processor concept, which may be viewed as the

dual of the better known virtual memory concept.

Mesh decomposition and processor-to-element mapping are the fundamental software mod-
ules that hold the key to massively parallel finite element computations. A given mesh is
partitioned into 16 element subdomains that correspond to the 16-processor chips of the
CM-2. This partitioning is carried out in a way that minimizes the number of nodes at
the interface between the subdomains. As a result, only those processors that are mapped
onto finite elements at the subdomain boundary communicate with processors packaged
onto finite elements at the subdomain boundary communicate with processors packaged
on different chips. Moreover, this partitioning is such that the bandwidth of the resulting

subdomain is large enough to allow efficient use of the 12 interchip wires.

The mapping algorithm attempts at reducing the distance information has to travel over
the communication network. It searches iteratively for an optimal mapping through a
2-step minimization of the communication costs associated with candidate mappings.

The following is a summary of the key conclusions reported in the referenced papers.

(1) The current CM-2 processor memory size of 64 Kbits penalizes high order elements
in the sense that only small VP (virtual processor) ratios can be achieved. Thus the

current configuration favors simpler elements. (This restriction should disappear in
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the CM-3 model, which will have 1Mbit of memory per processor and an aggregate
computing power of over 1000 Gflops.)

(2) Three-dimensional and higher-order finite elements induce longer communication

times.
(3) Mesh irregularities slow down the computation speed in various ways.
(4) The Data Vault is very effective at reducing I/O time.
(5) The Frame Buffer is ideal for real-time visualization.

(6) The Virtual Processor concept outperforms substructuring.

Ongoing Work

We have found that the CM-2 can outperform the Cray-2 on ezplicit calculations for which
sustained rates over 1 Gigaflop are possible. Given the intrinsic scalability of the massively
parallel architecture (for example, the 1 Teraflop CM-3 under development for DARPA)
there is little question as to the future potential for that class of computations which arise
naturally in dynamic simulations. Projections are for 100-1000 times what the fastest Cray

can achieve.

On the other hand, implicit calculations arise naturally in the solutions of static problems.
This class of calculation places a higher burden on communication, which has a detrimental
effect on performance. For such algorithms the vector supercomputers still outperform the
CM-2. Semi-iterative methods such as the conventional Conjugate Gradient (CG) also
suffer to some degree from communications overhead since information has to be gathered
from shared finite element nodes in residual calculations.

Over the past six months, Professor Farhat in collaboration with Dr. Roux of ONERA
(France) has developed an unconventional form of the CG algorithm called the “hybrid” or
“tearing” method. The primary objective in this development is to reduce communication
overhead on local memory parallel computers. A secondary objective is to reduce the
number of iterations for convergence. The present version of algorithm is described in
some detail in Refs. 11, 12 and 13. The initial version was coded in Fortran augmented
with the Force preprocessor and tested on the Cray YMP. These tests provided confidence
in the convergence characteristics on static problems involving up to 48,000 equations. A
subsequent version was ported to the Los Alamos iPSC Hypercube, on which the reduced
communication overhead was verified. As final tests, we plan to recode the algorithm in
C* for the CM-2 and compare with the conventional CG implementation. Because of the
local memory limitations, however, the domain decomposition on the CM-2 is done at the

element level.



Final Benchmarking Work

During the period of March to date (July 1990) we have benchmarked large-scale static
problems on the CM-2 versus the Cray 2 and Cray YMP. The results are being analyzed
at the time of the writing and will be subsequently reported in the literature.
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Staggered Solution Procedures for

Multibody Dynamics Simulation

K. C. Park, J. C. Chiou, and J. D. Downer

Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, USA

I. Introduction

Simulation of multibody dynamics systems — such as robotic manipulators, automo-
biles maneuvering and satellites deployment — remains a challenge to the dynamist due to
its increasing roles in design improvements, control and safe operation. Because of sub-
stantial progress made during the past three decades in formulation'~!?, constraint treat-
ment and solution techniques?!~%¢ and the availability of multibody dynamics simulation
packages®"*2, it has now become almost a routine practice to perform realistic modeling
and assessment of some practical problems such as mechanical linkages and manipulations
of robotic arms if multibody components consist mostly of rigid bodies, discrete springs and
dampers (see, e.g., Haug!%). However, substantial advances in modeling, formulation and
computational methods are necessary in order to develop a real-time simulation capabil-
ity for ground vehicle maneuvering dynamics, robotic manipulations and space structures
deployment /assembly.

Specifically, improved modeling of flexibility for localized motions and geometric non-
linearities, material nonlinearities and contact/friction phenomena, robust and accurate
treatment of the system constraint conditions and efficient use of emerging computer hard-
ware/software technology continue to offer intense research opportunities. Thus, the de-
velopment of a real-time multibody dynamics simulation capability requires a concerted
integration of various modeling, formulation and computational aspects. These include:
selection of a data structure for describing the system topology, computerized generation
of the governing equations of motion, implementation of suitable solution algorithms, in-
corporation of constraint conditions and easy interpretation of the simulation results. Of
these, this chapter is concerned with three computational aspects of multibody dynamics
simulation: direct time integration of the governing equations of motion, stabilization of
constraint solution process and their computer implementation aspects.

From the computational viewpoint, multibody dynamics (MBD) problems are distinct
from the structural dynamics problems in that the solution of MBD problems must also

1



satisfy, at each time integration step, the attendant kinematic and equilibrium constraints.
This has motivated many dynamists to develop various techniques, in addition to direct in-
tegration algorithms, for accurately and efficiently handling the system constraints. Hence,
reliability and cost of existing MBD simulation packages have been strongly affected by
how efficiently and accurately the constraints are preserved during the numerical solution
stage.

In general, there have been two types of direct time integration algorithms for the
transient response analysis of dynamical systems: explicit and implicit algorithms (see,
e.g., Hughes and Belytschko??, Park** and Belytschko, Englemann and Liu*®). Currently,
implicit algorithms appear to be favored by many MBD specialists when both the gen-
eralized coordinates and the constraint forces are treated as the unknowns. In this case,
the corresponding formulations incorporate the system constraints by the Lagrange mul-
tipliers method. It has been well known that the resulting Newton-like solution matrix is
stiff. This has led to implicit time discretization of the constraint-augmented equations
and simultaneous solution of both the generalized coordinates and the Lagrange multipli-
ers. This approach has been extensively investigated by Gear?!, Baumgarte??:?® Orlandea,
Chase and Calahan??, Petzold??, Nikravesh?!, among others. Because these methods solve
both the generalized coordinates and the constraint forces simultaneously, they will be
called the simultaneous solution methods in this chapter.

On the other hand, if the constraints are eliminated so as to reduce the number of
unknowns, it is possible for one to employ either implicit or explicit algorithm. For this
situation, one may invoke either a geometric or algebraic procedure to streamline the re-
sulting equations of motion if the system topology is an open tree. In essence, geometric
procedures have utilized an open-tree topology such as the use of the incidence matrix by
Wittenburg!® and the body array matrix by Huston!®. Some of the proposed algebraic
procedures include the singular decomposition by Walton et al??, the use of the general-
ized speed of Kane and Levinson??, the coordinate partitioning technique by Wehage and
Haug?®, the selection of independent coordinates through the natural-coordinate formu-
lation of Garcia de Jalon et al®® and the so-called order-N procedures of Armstrong!?,
Hollerbach!?, Schwertassek and Roberson!?, Orin, et al**, among others.

As the complexity of MBD systems increases, the simultaneous solution methods
have become less attractive. This is due to matrix ill-conditioning especially for the so-
called indez two and higher index problems (see, e.g., Ref. 27 and Brenan, Campbell
and Petzold?® for the definition of indez for constraint characterization), divergence of the
solution away from the constraint conditions, and ultimately, due to a large size of the
equations that must be handled. As an alternative to the simultaneous solution methods,
a series of computational methods that employ a divide-and-conquer strategy have been
developed, which are termed as partitioned solution procedures presented in Park?’, Felippa
and Park?® and Park and Felippa®®. As an example, partitioned solution procedures allow
one to analyze fluid-structure interaction problems with two separate single-field analysis
packages, namely, the structural dynamics module and the fluid dynamics analyzer. At
each time integration step, one may advance the solution of structural equations of motion
by treating the fluid coupling term as an external force. Once the structural coordinates
are advanced, the fluid state variables can be advanced by treating the structural coupling
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terms as a source term. A naive partitioned procedure, however, can suffer from a loss of
accuracy as well as computational stability. Thus, a combination of equation augmentation
and stabilization should be devised to recover the accuracy loss and maintain unconditional
stability. Such a solution procedure is in contrast to a practice of embedding both the
structural and fluid dynamics attributes into a combined analysis program.

The numerical solution procedure for MBD systems which we advocate in this chapter
is termed a staggered MBD solution porcedure that solves the generalized coordinates in a
separate module from that for the constraint force. This requires a reformulation of the
constraint conditions so that the constraint forces can also be integrated in time. A major
advantage of such a partitioned solution procedure is that additional analysis capabilities
such as active controller and design optimization modules can be easily interfaced without
embedding them into a monolithic program. To this end, the rest of the chapter is organized
as follows. .

After introducing the basic equations of motion for MBD system in the next sec-
tion, Section III briefly reviews some constraint handling techniques and introduces the
staggered stabilized technique®*:3® for the solution of the constraint forces as independent
variables.

The numerical direct time integration of the equations of motion is described in Sec-
tion IV. As accurate damping treatment is important for the dynamics of space structures,
we have employed the central difference method and the mid-point form of the trapezoidal
rule since they engender no numerical damping. This 1s in contrast to the current prac-
tice in dynamic simulations of ground vehicles by employing a set of backward difference
formulas®®. First, the equations of motion is partitioned according to the translational and
the rotational coordinates. This sets the stage for an efficient treatment of the rotational
motions via the singularity-free Euler parameters. The resulting partitioned equations of
motion are then integrated via a two-stage explicit stabilized algorithm for updating both
the translational coordinates and angular velocities®*. Once the angular velocities are ob-
tained, the angular orientations are updated via the mid-point implicit formula employing
the Euler parameters.

When the two algorithms, namely, the two-stage explicit algorithm for the generalized
coordinates and the implicit staggered procedure for the constraint Lagrange multipliers,
are brought together in a staggered manner, they constitute a staggered explicit-implicit
procedure which are summarized in Section V. Section VI presents some example problems
and discussions concerning several salient features of the staggered MBD solution procedure
are offered in Section VII.

II. Governing Equations of Motion

The Lagrangian equations of motion for mechanical systems that are free from any
constraint can be written, for the generalized coordinate component u;, as

.=Q,', t=1...n. (1)

where L is the system Lagrangian, ¢ is the time, () denotes time differentiation and Q;
is the generalized applied force. It is well-known that, if there are m-constraint conditions
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imposed on {u;, ¢=1...n}, the above equation must be modified as

d 8L 8L = :
Egd—;—gtz—Qi‘}'kz::l)‘kBkh z-—l...n, (2)

where A is the Lagrange multiplier and By is the i-th gradient component of the k-th
constraint equation, viz, for configuration constraints

05 1%
@k(u)—O, Bk,—-a—;, k-l.\..m (3)
and for motion constraints
Fy(u, ) =0, Bk,-=%i—_k-, k=1...m. (4)

Therefore, regardless of the nature of constraints one may express the equations of
motion with constraints in the following form:

M BT] (i _{(Q 5)
B 0 AT e
where M is a positive-definite matrix and ¢ depends on the nature of constraints. For
example, for configuration constraints we have

Jd 0 . g .09 . 0*d
= 5@ %Y " )
and for motion constraints
__o¢ 7
c=—= (7)

An implicit time integration formula to solve (5) may be written as

u” =46a" +hj
{ u” =6u"+h} (8)

where 6§ is a stepsize that is dependent on the choice of formula, and h} and h} are
formula-dependent historical vectors that consist of past-step solution components*8:590,
As an example, the trapezoidal rule has the following § and historical vectors

§=h/2
h} = a™! 4 6! (9)
h] = u™"! 4 ™!

where h is the time-step increment.



Substitution of (8) into (5) yields
M &BT] (u" ry Mh™ + 62Q"
n = n = n 2 (10)
B 0 A Ty Bh™ 4 §%c
In practice, in order to avoid pivoting and to maintain high accuracy, the solution of

the above difference equations is carried out as follows. First, since M is nonsingular for
properly formulated dynamical problems, one computes

u’

u, =M}, C=M"T'BY, A=BC (11)
and factors A. Second, one obtains A™ by solving
A" = A™Y(Bu, —r})/6? (12)

Finally, u” is obtained from
u” = u, — 62CA" (13)

It should be noted that the accuracy loss associated with the factoring of an ill-
conditioned matrix BA~!BT and the subsequent backsubstitutions can severely influence -
the solution accuracy of not only the Lagrange multipliers but also the generalized coordi-
nates as seen from (12) and (13). This has motivated many numerical analysts to undertake
the development of methods for differential-algebraic systems as the recent monograph*é
and references therein attest to their rich numerical properties. It is generally agreed that
the present status of differential-algebraic methods yield robust solutions for problems of
indez one, but can suffer from inaccurate solutions of the Lagrange multipliers for higher
indez problems. Observe that many practical multibody dynamics problems are charac-
terized by index greater than one. Hence, the need to compute accurately the constraint
forces remains a challenge. For instance, for lock-up mechanisms that are activated when
truss structures are fully deployed in space often introduce stiff responses with nearly
singular state of BM~!B7T. 1t is with these problems for which more robust constraint
computation algorithms are called for.

One way to improve the accuracy of constraint force computations is to adopt index
reduction strategies as discussed in Ref. 46. However, index reduction inevitably intro-
duces additional system degrees of freedom in the resulting differential-algebraic equations,
thus destroying the matrix sparsity of (5) in addition to the increased size of the matrix B.
In what follows we present an alternative approach based on a parabolic regularization of
the equations for the Lagrange multipliers, which preserves the first row of (5) and enables
us to solve X from the parabolic differential equations.

ITI. Constraint Handling Techniques

As alluded to in Introduction, techniques for handling the system constraints consti-
tute a major part of solution procedures for the numerical simulation of multibody dy-
namics systems. In this section, we will first review the coordinate partitioning technique,
Baumgarte’s technique and the penalty technique. The staggered stabilization procedure
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which we advocate will then be described in detail. A distinct feature of the staggered
stabilization procedure is that it can be implemented in a stand-alone module, thus can
be interfaced not only with the equation solver for rigid-body systems but with that for
flexible-body systems as well.

A. Coordinate Partitioning Technique

In the coordinate partitioning?®®? or singular decomposition technique???, one se-
lects a rank sufficient part of B and partitions it as
B=|Bi B.], u=[u q.] (14)

where the rank of B;(m X m) is m and the subscripts (z, €) refer to internal and ezternal
variables, respectively. First, we express u; in terms of u, as

uf = B '(r} — Beuy) (15)
Since we have
BT
8757 1 gr =0 (16)
The first row of (10) reduces to
(M. + TTM;T)qQ" =17 (17)
where v 0
— -1 _ WLy n __ !':'.
reseim, = 0] w=(%) "
and
r,=r; - TTrZ.. + TTM;B v} (19)

Once one obtains u?, one can obtain u? from (15) and similarly A from (12). Note that
even though (17) has a smaller dimension than that of (10a), its left-hand side matrix is in
general full since T given by (18a) is in general full. Hence, unless T is a constant matrix,
one must refactor the solution matrix in (17) whenever a new T is formed.

B. Baumgarte’s Technique

Baumgarte’s technique???® is based on the observation that the errors committed

in computing the constraint conditions (3) or (4) can either be critically damped out or
exponentially decreased as the integration process continues. Mathematically, this can be
stated for the configuration constraint equation(3) as

& +2a8 + 8 =0 (20)
or the motion constraint equation(4) as
S+ =0 (21)
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In terms of the general constraint equation augmentation as given by (5b), the pre-
ceding stabilization is equivalent to modifying ¢ in (5b) accordingly. Hence, the technique
can be implemented within the standard augmented form of the equations of motion (5).
However, if BM~!BT is ill-conditioned, which can happen since B is in general state-
dependent, the accuracy of generalized constraint force, A, can be considerably degraded.
This can occur if any two rows of B are physically similar (i.e., when two members form
a straight line) or numerically close during three-dimensional orientations.

C. Penalty Technique
In the two constraint handling techniques outlined so far, the ob jective was to satisfy
the constraint condition _
=0 ‘ (22)
whose differentiated forms were augmented to the equations of motion. In the penalty

procedure, one adopts
' 1

A= —E—@, e—0 (23)
as the basic constraint equaﬁions instead of the twice-differentiated form adopted in (5).

It is noted that the penalty formulation tacitly assumes that there will be violations
of the constraint condition in actual computations as discussed in Lanczos®!. If one sub-
stitutes (23) into the governing equations of motion, the resulting equation becomes

Mii + %BTQS =Q | (24)

A major drawback of the above penalty procedure is that, once an error is committed
in computing A, there is no compensation scheme by which the drifting of the numerical
solution can be corrected. This has led to the development of a staggered stabilized
procedure as described below.

D. Staggered Stabilization Procedure

To illustrate this procedure we will consider the case of nonholonomic constraints.
Instead of substituting the penalty expression directly into the governing equations of
motion, first we differentiate (23) once to obtain

. 1 _. 09
= =(Bi+ & (25)

where we assume the penalty parameter, €, to be constant.

Second, we obtain for i1 from (5a) in the form
it=M"YQ-BT)) (26)
and substitute it into (25) to yield

e,'\+BM"1BTz\=rA=BM_1Q+aa—f (27)



Notice that the homogeneous part of the above stabilized equation in terms of the
generalized constraint forces, A, has the following companion eigenvalue problem:

(v+BM™'BT/e)y =0 (28)

where {v;, k = 1...m} are the eigenvalues of the homogeneous operator for the new
stabilized constraint equations (27). Since -, also dictates how the errors in the constraint
forces will diminish with time, the errors committed in the constraint conditions will decay
with their corresponding different response time constants. This physically oriented stabi-
lization property of the present technique is in contrast to that of Baumgarte’s technique
wherein all the error components diminish according to a single time constant.

Third, this technique enables one to solve for A from the stabilized differential equa-
tion (27). Specifically, one now has two coupled equations, one set for the generalized
coordinates u and the other for the generalized constraint forces A, which are recalled here
from (5a) and (27) for the case of nonholonomic constraints:

[% 2“3*[8 BM]{fBT]{i}z{g} (29)

Note that the above coupled equations directly provide the desired differential equations
for a pairof [u A]J.

For holonomic constraints, one has several stabilization possibilities. The one we have
chosen is to integrate the governing equations of motion once to obtain

u" =M Y(Q" - BTA") + h} (30)
which is substituted into
i=LBat+ 31
e ot (31)
to yield:
eA” +6BMIBTA™ = B(6M Q" + h}) + g—f (32)

It is observed that, even if BM ™'B7 is almost singular, this stabilization tech-
nique as derived in (27) and (32) would not cause numerical difficulty in computing
A since the solution iteration matrix becomes (¢ + §BM~'B7) for nonholonomic cases
and (e + 62BM~!B7) for holonomic cases. It is noted that one must choose € in such

a way to maintain robust solution when BM 'B7 becomes ill-conditioned by choosing
e~c/(BM™IBT)=1|.|BM !B7| where c is the solution accuracy desired for .

Integration of the above equation by the mid-point implicit rule yields the following
difference equation: ‘

(33)

{(eI::éBM-lgj‘z,\"“/‘* = 2T ) 4 e
AT = gpnH/4 _ \n
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It has been shown that the staggered stabilized procedure for the solution of the
constraints offers not only a modular software package to treat the constraints but also
has been found to yield more robust solutions compared to the techniques proposed by
Baumgarte as reported in Park and Chiou®®. In particular, even when BM™!BT be-
comes nearly singular, the staggered stabilized procedure (33) gives stable and acceptable
solutions whereas the constraint forces computed by the Baumgarte’s technique diverge.

IV. Solution Algorithms for Generalized Coordinates

In addition to the choice of implicit and explicit formulas, the recognition that the
equations of motion for multibody systems with constraints are not ordinary differential
equations (ODEs) (see, e.g., Petzold?”) has placed a unique requirement in the selection
of solution algorithms for multibody dynamics problems. From the user’s viewpoint, one
has the option of either employing one of the available ODE packages (see Enright3? for
existing ODE packages) or building a special solution module. It should be noted that,
since the integration of angular velocity vector does not lead to angular orientations, one
must solve a set of kinematical equations to obtain the desired angular orientations.

In this section we describe an explicit-implicit transient analysis algorithm that ex-
ploits the special kinematical relationships of the generalized rotational coordinates vs.
the angular velocity, namely, the Euler parameters®*. The integration of the translational
coordinates and the angular velocity is accomplished by the central difference formula. It
should be mentioned that the use of the central difference formula does impose a stepsize
restriction due to its stability limit ( w,,,.h < 2) where w,,,, is the highest angular veloc-
ity of the system components for rigid-body systems or the highest frequency of the entire
flexible members for flexible-body systems. The simplicity of its programming effort and
robustness of its solution results can often become compelling enough to adopt an explicit
formula, which is the view taken here.

In conventional structural dynamics analysis, explicit time integration of the equations
of motion by the central difference formula involves the following two updates per step:

-n+1/2 _ ~n—-1/2 -n
u =u + hu
{ u™t! = u" + hl:ln+l/2 (34)

Unfortunately, this simplistic procedure is not directly applicable to the rotational part of
the equations of motion as w is not directly integrable, except for some special kinematic
configurations. This motivates us to partition q into the translational velocity vector, d,
which is directly integrable and the angular velocity vector, w, which is not, and treat

them differently, viz.: . )
ﬁ={‘.i}, ﬁ={d} | (35)
w w

The equations of motion (5a) can be partitioned according to the above partitioning:

[Agd Agu] {g}z{gi} (36)
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where

@G- Ry e

in which the subscripts (d,w) refer to the translational and the rotational motions, re-
spectively, f is the external force vector, D is the generalized damping force including the
centrifugal force, S is the internal force vector including member flexibility, q is the angular
orientation parameters, By and By are the partition of the combined gradient matrices
of the constraint conditions (3) or (4) that are symbolically expressed as -

B =By + By, A=Ayx+Ay (38)
To effect the body-by-body integration for the rotational degrees of freedom, we par-

tition w further into T
w=|od%. .., 0P (39)

where w(? is a (3x1) angular acceleration vector for the j-th body,
W) = LW(J) (J )’wgJ)J (40)

We now present the update algorithm for both translational and rotational coordi-
nates.

A. Update of Translational and Angular Velocity

First, assume that d"7!/2 and q"1t1/2 are already computed so that we can compute
+1/2
nty/ and w"*t1/? by (36), namely,

an+1/2 oy D;+§+Sn+-} sz\"”"% i
ont1/2 - ]:)7'1+J;+Sn+2 BZ"'A,H.%. (41)

d

Second, we update the translational velocity and the angular velocity vectors at the step
(n+1) by

a _ d +hdn+1/2 (42)
n-+-1 — U) + hwn+1/2
Third, we update the translational displacement, d, by
drt3/? — gqrt1/z rd” (43)

However, the updating of the angular orientation requires somewhat involved computa-
tions. To this end, we will employ the Euler parameters and update them accordingly.
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B. Update of Euler Parameters and Angular Velocity

As mentioned in conjunction with a direct use of (34) for integrating the rotational equa-
tions of motion, it is necessary for one to introduce a set of generalized coordinates whose
time rate can be related to the angular velocity. To this end, we employ the four-parameter
Euler representation of the angular velocity for each body as (see, e.g., Wittenburg!®):

a=1[° g awa a=le o @ o (44)
5lw —-@ ) 0o 1 92 g3
that is subject to the constraint:
q’q=1 (45)
where
0 —W3 wao
@ = W3 0 —wi |, w = Lwl Wwao W3_|T (46)
—W2 wi 0

and the nodal-designation superscript is omitted for notational simplicity.

We adopt the mid-point implicit procedure to integrate the Euler parameters:

n+l _ A(wn-{—l) . qn+1
n+1 _ qn+1/2 + _%qn+1
n+3/2 _ 2qn+l _ qﬂ+l/2
qn+3/2)T ) qn+3/2 =1

q
q
a (47)
(

It should be noted that the mid-point implicit update is no more costly than any explicit
as the solution matrix inversion can be explicitly obtained.

Finally, once q"t3/2 is computed from (47), it is often required to compute the body-
fixed basis vector, b = |b; b, b3JT in terms of the inertial basis vectors, e =
le; ez e3] T These two vectors are related by

b = Re (48)

where
203+ ¢} -1 2(q192 + 9093) 2(9193 — q0g2)
R = | 2(q192 — 9093) 2(‘13 + q%) -1 2(q2q3 + q0q1) (49)
2(q193 + g0g92) 2(g2q3 — goq1) 2(¢2 +4%) -1
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C. Update of d,w,d, q at the (n + 2)-step

So far we have advanced from the step (n+1) to the step (n+3/2). In other words, we have
advanced only half of the total step. For the next step, viz, the step (n+2) from (n+3/2),
we employ the following sequence of computations:

wn+l n+1 n+1 Ty n+1
d 1| D +S -B;A
{‘bn+1 } =-M" {Df‘“ + S'riz+1 _ B%‘An+1 } (50)
{ an+3/2 _ ~n+1/2 + han+1 (51)
wn+3/2 — wn+1/2 + h“-)n+1 ‘

dm? = dn+ 4 "t

qn+3/2 = A(wn+3/2)qn+3/2
q"t3/? = gt 4 gqn+3/2 (52)
qn+2 —_ 2qn+3/2 _ qn+1
(q"+%)Tqm*? =1
d'n+3/2

Note that we do not use and q"*3/? in advancing from the step (n+3/2) to the

present step (n+2) in computing d"*? and q"*2. Instead, we employ d"*! and q™*1, hence
the name two-stage staggered ezplicit procedure3*. The net result is that, even though we
take a full step (h instead of h/2), we only advance half the step at a time. In other words,
we evaluate the acceleration and the angular acceleration vectors twice for each full step.

V. Implementation

We will now outline the implementation aspects of the the partitioned MBD solution pro-
cedure. The procedure is implemented into two separate integration modules: generalized-
coordinate integrator (CINT) and Lagrange multiplier solver (LINT). The generalized-
coordinate integrator employs a two-stage modified form of the central difference method
for updating the angular velocity vector and the mid-point implicit rule for updating the
angular orientations via the Euler parameters. The Lagrange multipliers solver adopts a
staggered form of the mid-point implicit method.

A. Generalized-Coordinate Integrator (CINT)

The module receives f? = B7A" from LINT and advances the solution of the MBD
equation (1) from time t™ to t**!. At each integration step, CINT performs the following
computations.

Given: pr=(d" 7%, d", w1/2, g") and g" = (w", /7 = BTA™))
Compute: d” and ™ by (41)
Advance:

an+l/2 — “n-1/2 + han (53)
dn+1 — dn + han+1/2
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wnt1/2 = 12 4 po”
G2 = LI+ AW q7, A=1+ 5w+ wi+wd) (54)

.qn-}-l — 2Eln+1/2 - q", (qn+1)T . qn+1 =1

Output: pntl = (au+1/2’ drtl, wn+1/2,qn+l)
Module Invoke: Call CINT (p*, g", h, p™*?)

where h is the stepsize and A(w) is given by

0 —W1 Wy —W3
1w 0 w3z —Wws;
Alw) = 2wz —ws3 0 w (55)
w3 Wo —Wwi 0

and §"*!/? is an intermediate vector and (54c) must be solved to obtain q"*! so as to to
satisfy the linear dependency constraint, qfq=1.

B. Lagrange Multiplier Solver (LINT)

This module receives (d, d, w, q) from CINT and performs the following computations.

Given: /2 = (d""'l/z, drti/z iz grtl/z AT
Compute: B"+1/2, BM~'B7 and r:“ﬂ by (3) and (4)
Advance: »
A o (d+ ABMIBT) (A + (g + )
A"H1/2 — zi"+1/4 _\" (56)
f’;+1/2 - (Bn+1/2)T . An+1/2
n n+1/2
Output: AnH/2 gt/

Module Invoke:  Call LINT (£7+1/2, h, An+1/2 §1+1/2)

C. Two-Stage Explicit-Implicit Staggered Procedure

In order to evaluate ™!, w™! must be known. Notice from the preceding section that
only w"+1/2 is available. Because inaccurate treatments of the gyroscopic damping and the
centrifugal force terms can lead quickly to computational instability in computing wntl

it is not advisable to obtain w™*! by extrapolating with w"t1/2 and w"~1/2. To mitigate
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this difficulty, we advance only to the next half step, at each CINT and LINT call. This
is illustrated as follows:

t=1t"

Call CINT (p™, g", h, p"*?)

Call LINT (£7+1/2, h, A™+1/2 £3+1/%)
t=t"4+h/2 (ne—n+1/2)

Call CINT (p™+1/2, gnt1/2 h, pnt3/2)

Call LINT (¢n+1, h, A™+1 £111) .
t=t"+h

Note that 112
g = (W, £

together with

p'n.-%-l/2 =(an, dn+1/2, w", qn+?/2)
provides the necessary input data to compute &"*1’2 and @w"t1/2 in the second call of
CINT in the above calling sequence. In summary, the present procedure requires two
function evaluations and two A-solutions per each full step, hence the name “two-stage
explicit-implicit staggered procedure”.

VI. Numerical Examples

The two modules, the generalized coordinate integrator (CINT) and the Lagrange multi-
pliers solver (LINT), have been implemented in Fortran 77. In solving the following three
example problems, we have incorporated the constraint conditions through the use of La-
grange multipliers instead of eliminating the constraints. It is therefore necessary to solve
the governing equations of motion in a way that satisfies the constraint equations. Hence,
efficient and accurate solutions of these problems will confirm not only the viability of the
present integration procedure for the solution of the multibody equations of motion with
or without constraints but also the constraint stabilization procedure in their combined
totality.

A. Plane Three-Link Manipulator

The first problem tested is a simplified version of the seven-link manipulator deployment
problem52. The three links are initially folded and, for modeling simplicity, between the
two joints is a coil spring which resists a constant deploying force at the tip of the third
link. Also, the left-hand end of the first link is fixed through the same coil spring to the
wall. These three coil springs are to be locked up once the links are deployed straight. The
deployment sequence of the manipulator is illustrated in Fig. 1. The time-discretized dif-
ference equations both for Baumgarte’s technique and the staggered stabilization technique
have been solved at each time increment by a Newton-type iterative procedure to meet
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a specified accuracy level. Hence, the performance of the two techniques can be assessed
by the average number of iterations taken per time increment. This is presented in Fig.
2 for the accuracy of 10™%. Notice that the staggered stabilization technique requires on
the average about 4.5 iterations per step, whereas Baumgarte’s technique requires about
22 iterations per step.

Note that Baumgarte’s technique fails to converge for time, t ~ 1.1 as manifested in Fig. 2
because the rows in B become numerically dependent upon one another when the links are
in a straight configuration. This corroborates the theoretical prediction of non-convergence
whenever the solution matrix, BM™!B7T, for Baumgarte’s technique (see Eqs.(5b), (20)
and (21)) becomes singular. On the other hand, the staggered stabilization technique still
converges within 30 iterations, because it overcomes this singularity difficulty, since A still
exists, as can be seen from Eqgs. (27) and (32).

It should be noted that, in order to avoid such ill-conditioning, one must differen-
tiate the constraint equations once or twice more and recast the resulting higher-order
constraint equations in terms of first-order equations with increased number of equations.
This process is known as an index reduction strategy?®. Thus, one must restructure the
augmented equations of motion (5) with the net result of increased solution variables.
Other techniques involve singular value decompositions, e.g., as advocated by Fiihrer and
Leimkuhler33. On the other hand, the present staggered stabilization technique overcomes
the ill-conditioning difficulty without restructuring the governing equations of motion. In-
stead, the constraint equations are enforced in a separate module by the parabolically
regularized equations for the Lagrange multipliers as derived in (27) and (32).

Although not reported here, the same relative performance has been observed for different
accuracy levels, i.e., for the accuracy of 1075 and 107°.

From this test problem, we conclude that the staggered stabilization technique yields
both improved accuracy over and greater computational robustness than the Baumgarte
technique. In addition, the staggered stabilization technique offers software modularity in
that the solution of the constraint force, A, can be carried out separately from that of the
generalized displacement, q. The only data each solution module needs to exchange with
the other is a set of vectors, plus a common module to generate the gradient matrix of the
constraints, B. However, one should be cautioned not to extrapolate blindly to complex
problems the results of the present simple examples. Further judicious experiments are
needed in applying the present staggered stabilization technique to complex production-
level problems before it can be adopted for general applications in multibody dynamic
simulations.

B. Three-Dimensional Double Pendulum

The second problem with which we have tested the present procedure is a spatially moving
double pendulum as shown in Fig. 3. The governing equations of motion become those of
two separate rigid bars, except they are connected by two spherical joints. From Fig. 3
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we have the the following quantities:

¢‘=a‘—%w"xz‘=o, i=1, 2. (57)
M = diag{m?, J!, m?, J?} (58)
_[r 3z'x o 0
B = [I -1z'x -1 —-1z’x (59)
- 0 -t
0
f! } i 0 ) .
F = y = - y = 1, 2. 60
“ { f? f wows(J2 — J3) ’ (60)
wawl(Js - Jl)
| wiw2(J1 — J2) ]

it={d o}, dF=[§ T, o=l b bl (61)

A =], A2, A3, Ag, As, Ae]T (62)

In the preceding equations, %z is the vectorial distance from the center of the bar to
the spherical joint constraints, m and J are the three translational and rotatory inertia
matrices, Z is the skew symmetric matrix formed by the three components of z, x implies
a vector cross multiplication, and the superscript designates the i-th bar.

The pendulum is originally positioned in a gravity field with initial horizontal angular
velocities (w(zl) =w® = 1). Figure 4 shows the spatial trajectories of the two mass centers
as projected on the horizontal surface and on the vertical plane. It is noted that the two
trajectories form a similar pattern. The constraint forces and angular velocities, although
not reported herein, exhibit patterns that are analogous in their characteristics for the two

joints and two mass centers, respectively.

We have performed convergence studies by using different stepsizes h. Numerical evalua-
tions indicate, as with the rigid-link problem, that when the stepsize samples more than
20 per period, the present procedure yields both good accuracy and stability.

C. Open-Loop Torque for Three-Link Manipulator

The third problem is a three-link manipulator maneuvering under a specified nonholonomic
tip velocity constraint. For this problem, both rigid links and flexible links with four
beam elements per link have been investigated. The flexible beam was modeled with a
constant-strain Timoshenko beam element that allows large rotations. The three joints are
modeled as spherical ones and the Lagrange multipliers have been introduced to enforce
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the joint constraints and well as the nonholonomic constraint at the manipulator tip. The
trajectories of the manipulator and the tip velocity specification are shown in Figs. 5
and 6. The corresponding joint torques for the rigid and flexible links are also shown in
Figs. 7 and 8, respectively. Note that even though there exists little difference in the two
" trajectories of the rigid and flexible cases, there are significant differences in the open-loop
joint torques. These will play an important role in the design of controller for vibration
suppression in the manipulator arms.

VII. Discussions

In this chapter, we have presented a computational procedure for direct integration of the
multibody dynamical (MBD) equations with constraints.

Because of its step-advancing nature, the procedure is labeled as a two-stage staggered
explicit-implicit algorithm: explicit for solving the generalized coordinates (CINT) and
implicit for Lagrange multipliers to incorporate constraints (LINT). Our numerical exper-
iments indicate that it is essential to enforce the linear dependency constraint condition
on the Euler parameters at each integration step.

Numerical experiments reported herein and additional applications conducted so far in-
dicate that the present procedure yields robust solutions if the stepsize gives more than
twenty samples for the period of the apparent highest response frequency of a given multi-
body system. Hence, the present procedure appears to have accomplished the following:

¢ For closed loop multibody systems and/or problems with complex topology wherein it
is practically inadvisable to eliminate the constraints, the present procedure facilitates
a straightforward construction of the governing equations of motion with appropri-
ate constraints. The generalized coordinates and the system open and closed loop
Lagrange multipliers can then be solved by the present procedure in a partitioned
manner.

e For problems that involve lock-up mechanisms or similar discontinuities, the present
procedure appears to overcome numerical difficulties encountered in using the Baum-
garte stabilization. This may be an important impetus for applying the present pro-
cedure for the simulation of deployment dynamics of space structures.

o  The angular velocity is obtained by an adaptation of the central difference algorithm
in a two-stage form and the update of angular orientations is based on the Euler pa-
rameters by adopting the mid-point implicit formula. Both of the integrators conserve
the system energy, which is important when the multibody simulation package is to be

. interfaced with an active control synthesis module. This is because stability margins
of active control systems are sensitive to the system damping characteristics either
physical or numerical.

o The present MBD solution procedure is implemented into two separate modules: the
generalized coordinates solver (CINT) and the constraint Lagrange multiplier solver
(LINT). Hence, the task for interfacing of the present MBD solution modules with
additional capabilities such as active controller, observer and other analysis and design
software modules becomes relatively straightforward. Such software architecture is
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in contrast to most of the existing programming practice wherein several analysis
capabilities are embedded into a single monolithic program.

Applications of the present procedure to flexible multibody systems are currently being
carried out and preliminary results are quite encouraging. We hope to report on the results
of flexible-body dynamics as well as on large-scale multibody problems in the near future.

Acknowledgements

The work reported herein was supported by NASA /Langley Research Center under Grant
NAG-1-756. The authors wish to thank Dr. Jerry Housner for his keen interest and
encouragement during the course of the present work.

References

1. Hooker, W. and Margulies, G., “The Dynamical Attitude Equations for an N-body
Satellite,” J. Astronautical Science, Vol. 12, 1965, pp. 123-12.

2. Roberson, R. and Wittenburg, J., “A Dynamical Formalism for an Arbitrary Number
of Interconnected Rigid Bodies with Reference to the Problem of Satellite Attitude
Control,” Proc. the Third Int. Congress of Automatic Control, Butterworth, London,

1965.

3. Roberson, R., “A Form of the Translational Dynamical Equations for Relative Motion
in Systems of Many Non-Rigid Bodies,” Acta Mech. Vol. 14, 1972, pp. 297-308.

4. Huston, R. L. and Passerello, C. E., “On Lagrange’s Form of d‘Alembert’s Principle,”
The Matrix and Tensor Quarterly, Vol. 23, 1973, pp. 109-112.

5. Boland, P., Samin, J. and Willems, P., “Stability Analysis of Interconnected De-
formable Bodies in a Topological Tree,” AIAA J., Vol. 12, 1974, pp. 1025-1030.

6. Likins, P., “Analytical Dynamics and Nonrigid Spacecraft Simulation,” Jet Propulsion
Laboratory, Technical Report 32-1593, Pasadena, Ca., 1974.

7. De Veubeke, B. F., “The Dynamics of Flexible Bodies,” Int. J. Engng. Sci., Vol. 14,
1976, pp. 895-913.

8. Jerkovsky, W., “The Transformation Operator Approach to Multisystem Dynamics,
Part I: The General Approach,” The Matrix and Tensor Quarterly, Vol. 27, 1976, pp.
48-59.

9. Ho, J. Y. L., “Direct Path Method for Flexible Multibody Spacecraft Dynamics,”
Journal of Spacecraft and Rockets, Vol. 14, No. 2, 1977, pp. 102-110.

10. Wittenburg, J., Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, 1977.

18



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

W. W. Armstrong, “Recursive Solution to the Equations of Motion of an N-Link
Manipulator,” Proc. 5th World Congress, Theory of Machines, Mechanisms, Vol. 2,
1979, pp. 1343-1346.

Hollerbach, J., M., “A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity,” IEEE Trans on
Systems, Man, and Cybernetics, SMC-10, 1980, pp. 730-736.

Kane, T. and Levinson, D., “Formulation of Equations of Motion for Complex Space-
craft,” J. Guidance and Control, Vol. 3, 1980, pp. 99-112.

Keat, J. E., “Dynamical Equations of Body Systems with Applications Space Struc-
ture Deployment”, PhD Thesis, MIT, 1983.

Haug, E. J. (ed.), Computer Aided Analysis and Optimization of Mechanical System
Dynamics, Springer-Verlag, Berlin 1984.

Roberson, R. E. and Schwertassek, R., Dynamics of Multibody Systems, Springer-
Verlag, New York, 1984.

Schwertassek, R. and Roberson, R. E., “A State-Space Dynamical Representation for
Multibody Mechanical Systems, Part I1,” Acta Mechanica, Vol. 51, 1984, pp. 15-29.

Bianchi, G. and Schielen, W. (eds), Dynamics and Multibody Systems, Springer-
Verlag, Berlin, Heidelberg, 1986.

Huston, R. L., Lecture Notes on Dynamics, Preprint, University of Cincinnati, 1988.

Walton, W. C. and Steeves, E. C., “A New Matrix Theorem and Its Application
for Establishing Independent Coordinates for Complex Dynamical Systems with Con-
straints,” NASA TR-R326, 1969.

Gear, C. W., “Simultaneous Numerical Solution of Differential/ Alge-braic Equations,”
IEEE Trans. Circuit Theory, CT-18, 1971, pp. 89-95.

Baumgarte, J. W., “Stabilization of Constraints and Integrals of Motion in Dynamical
Systems,” Comp. Meth. Appl. Mech. Engr., Vol. 1, 1972, pp. 1-16.

Orlandea, N., Chase, M. A. and Calahan, D. A,, “A Sparsity-Oriented Approach to
the Dynamic Analysis and Design of Mechanical Systems - Part I and II,” Trans.
ASME, J. Eng. for Industry, Ser. B, Vol. 99, 1977, pp. 773-784.

Létstedt, P., “On a Penalty Function Method for the Simulation of Mechanical Sys-
tems Subject to Constraints,” Royal Institute of Technology, TRITA-NA-7919, Stock-
holm, Sweden, 1979. -

Orin, D. E., D. E., McGhee, R. B., Vukobratovic, M. and Hartoch, G., “Kinematic
and Kinetic Analysis of Open-chain Linkages Utilizing Newton-Euler Methods,” Math.
Biosc., Vol. 43, 1979, pp. 106-130.

19



26.

27.

28.

29.

30.

31.

32.

33.

34.

33.

36.

37.

Huston, R. L. and Kamman, J. W., “A Discussion on Constraint Equations in Muiti-
body Dynamics,” Mech. Res. Comm., Vol. 9, 1982, pp. 251-256.

Petzold, L., “Differential/Algebraic Equations are not ODEs,” SIAM J. Sci. Stat.
Comp., Vol. 3, 1982, pp. 367-384.

Wehage, R. A. and Haug, E. J., “Generalized Coordinate Partitioning for Dimension
Reduction in Analysis of Constrained Dynamic Systems,” ASME J. of Mech. Design,
Vol. 104, 1982, pp. 247-255.

Baumgarte, J. W., “A New Method of Stabilization for Holonomic Constraints,” Jour-
nal of Applied Mechanics, Vol. 50, 1983, pp. 869-870.

Fiihrer, C. and Wallrapp, O., “A Computer-Oriented Method for Reducing Linearized
Multibody System Equations by Incorporating Constraints,” Comp. Meth. Appl.

*Mech. Engr., Vol. 46, 1984, pp. 169-175.

Nikravesh, P. E., “Some Methods for Dynamic Analysis of Constrained Mechanical
Systems: a Survey,” in: Computer Aided Analysis and Optimization of Mechanical
System Dynamics (E. J. Haug, ed.), NATO ASI series, F9, Springer-Verlag, Berlin,
1984, pp. 351-367.

Enright, W. H., “Numerical Methods for Systems of Initial Value Problems - The State
of the Art,” in: Computer Aided Analysis and Optimization of Mechanical System
Dynamics( E. J. Haug, ed.), NATO ASI series, F'9, Springer-Verlag, Berlin, 1984, pp.
309-322.

Garcia de Jalon, J., Unda, J., Avello, A. and Jimenez, J. M., “Dynamic Analysis
of Three-Dimensional Mechanisms in Natural Coordinates,” Journal of Mechanisms,
Transmissions and Automation in Design, Vol. 109, 1987, pp. 460-465.

Park, K.C., Chiou, J.C. and J. D. Downer, “A Computational Procedure for Large
Rotational Motions in Multibody Dynamics ,” Proc. the 29th Structures, Dynamics
and Materials Conference, ATAA Paper No. 88-2416, AIAA, 1988, pp.1593-1601 (also
to appear in J. Guidance, Control and Dynamics).

Park, K. C. and Chiou, J. C., “Stabilization of Computational Procedures for Con-
strained Dynamical Systems,” Journal of Guidance, Control and Dynamics, Vol. 11,
July-August 1988, pp. 365-370.

Geradin, M. and Cardona, A., “Kinematic and Dynamics of Rigid and Flexible Mech-
anisms Using Finite Elements and Quaternion Algebra,” Computational Mechanics,
Vol. 4, 1989, pp. 115-135.

Bodley, C. S., Devers, A. D., Park, A. C. and Frish, H. P., “A Digital Computer Pro-
gram for the Dynamic Interaction Simulation of Controls and Structures (DISCOS),”
NASA Technical Paper 1219, 1978.

20



38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

The ADAMS User’s Guide, Mechanical Dynamics, Inc., Ann Arbor, Mich., 1979.

Schwertassek, R., “Der Roberson/Wittenburg Formalismus and das Programmsystem
MULTIBODY zur Rechnersimulation von Mehrkdpersystemen,” Report DFVLR-FB-
78/08, DFVLR, Koln, 1978.

Huston, R. L., Harlow, M. W. and Gausewitz, N. L., “User’s Mannual for UCIN-
EULER - A Multipurpose, Multibody Systems Dynamics Computer Program,” NTIS
Report AD-A120403, 1982.

Haug, E. J., Lance, G. M., Nikravesh, P. E., Vanderploeg, M. J. and Wehage, R. A.,
DADS (Dynamic Analysis and Design Systems), Computer Aided Design Software
Inc., Oakdale, Jowa, 1983.

Housner, J. M., McGowan, P. E., Abrahamson, A. L. and Powel, M. G., “The LAT-
DYN User’s Mannual,” NASA TM 87635, NASA /Langley Research Center, January
1986.

Hughes, T. J. R. and Belytschko, T., “A Precis of Developments in Computational
Methods for Transient Analysis,” Journal of Applied Mechanics, 50, 1983, 1033-1041.

Park, K. C., “Transient Analysis Methods in Computational Methods,” Finite Ele-
ments: Theory and Applications (ed. D. L. Dwoyer, M. Y. Hussaini and R. G. Voigt),
Springer-Verlag, 1988, 240-267.

Belytschko, T., Englemann, B. E. and Liu, W. K,, “A Review of Recent Develop-
ments in Time Integration,” in: State-of-the-Art Surveys on Computational Mechan-
ics (Noor, A. K. and Oden, J. T, editors), ASME, 1989, pp. 185-200.

Brenan, K. E., Campbell, S. L. and Petzold, L. R., The Numerical Solution of Initial
Value Problems in Ordinary Differential-Algebraic Equations, Elsevier Science Pub-

lishing Co., 1989.

Park, K. C., “Partitioned Analysis Procedures for Coupled-Field Problems: Stability
Analysis,” Journal of Applied Mechanics, Vol. 47, 1980, pp. 370-378.

Felippa, C. A. and Park, K. C., ‘Staggered Transient Analysis Procedures for Coupled
Mechanical Systems,” Computer Methods in Applied Mechanics and Engineering, Vol.
24, 1980, pp. 61-111.

Park, K. C. and Felippa, C. A., “Partitioned Analysis of Coupled Systems,” in Com-
putational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes (eds.),
Elsevier Pub. Co., 1983, pp. 157-219.

Felippa, C. A. and Park, K. C., “Computational Aspects of Time Integration Proce-
dures in Structural Dynamics, Part 1: Implementation,” Journal of Applied Mechan-
ics, Vol. 45, 1978, pp. 595-602. )

21



51.

52.

93.

Lanczos, L., The Variational Principles of Mechanics, 4th ed., University of Toronto
Press, 1970, pp. 141-147.

Housner, J. M., “Convected Transient Analysis for Large Space Structure Maneuver
and Deployment,” AIAA-84-1023-CP, Proc. 25th Structures, Structurel Dynamics
and Material Conference, Part 2, 14-16 May 1984, Palm Springs, pp. 616-619.

Fiihrer, C. and Leimkuhler, B., “Formulation and Numerical Solution of the Equations
of Constrained Mechanical Motion,” Technical Report DFVLR-FB 89-08, DFVLR, D-
5000 Kéln 90, 1989.

\
t

22



Vertical Dimension

2.0

1.0

0.0

-1.0

Time(t=0.3)

Time(t=0.6)

Time(1=0.8)
Time (t=1.0)

Time(l=1.1)

0.0

1.5

Horizontal Dimension

Fig. 1 Deployment of Three-Link Remote Manipulator



per_Time Step

Iteration No.

per Time.Step

Iteration No.

100

50

50

[
i

| Baumgarte’s Technique

| | H 1 1 1 1 J
0.0 : 0.6 1.2
Time
- New Stabilized Technique
- ‘/_/""
,_.._____/—_—\_____/———'/
1 1 1 § L I 1 | B —_—
0.0 ' 0.6 1.2

Time
Fig 2 Performance of Two Stabilization Techniques

for Three-Link Remote Manipulator

(Solution Accuracy=10"°)



Fig 3

Double Pendulum with Spalial Joints



1.5

0.0

-1.5 0.0 " 1.5
X

Fig. 4a Trajectories of double pendulum on X-Z plane

1.5

0.0

-1.5 0.0 1.5

Fig. 4b Trajectories of double pendulum on X-Y plane



60

JOINT 3 TIP TRAJECTORY
40 ;
/8\ -
g
g 20 |-
=
B .
<
& 0
@)
o
o
o
: -20
‘e
JOINT 2 —7\
-40 1 ! 1 ! I ] 1 1 |
0 20 40 60 80 100

X-COORDINATE (inches)

Fig. 5 Crane Tip Trajectory of Rigid and Flexible Members



TIP VELOCITY (in/sec)

TIME (sec)

Fig. 6 Crane Tip Velocity of Rigid and Flexible Members

10



JOINT TORQUES (lbs in)

1600

800

-800

j --JOINT 1

JOINT 3 ———-&

—
—

P

——
S~
(e

-1600

TIME (sec)

iz. T Crane Joint Torque (Rigid Members) vs. Time

10



JOINT TORQUES (lbs in)

1600

800

-800

-1600

TIME (sec)

Fig. 8 Crane Joint Torque {Flexible Members) vs. Time



A Computational Procedure for Multibody
Systems Including Flexible Beam Dynamics
J. D. Downer, K. C. Park, and J. C. Chiou
Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls

University of Colorado at Boulder
Boulder, CO 80309-0429, USA

Abstract

A computational procedure suitable for the solution of equations of motions for flexible
multibody systems has been developed. The flexible beams are modeled using a fully non-
linear theory which accounts for both finite rotations and large deformations. The present
formulation incorporates physical measures of conjugate Cauchy stress and covariant strain
increments. As a consequence, the beam model can easily be interfaced with real-time strain
measurements and feedback control systems. A distinct feature of the present work is the com-
putational preservation of total energy for undamped systems; this is obtained via an objective
strain increment/stress update procedure combined with an energy-conserving time integra-
tion algorithm which contains an accurate update of angular orientations. The procedure is
demonstrated via several example problems.

1. Introduction

The simulation of flexible multibody systems is becoming an increasingly important
tool for the design and operation of many engineering applications. Typical examples of
such systems include deployable space structures, high precision machine dynamics and
robotics, and other problems containing controlled positioning of structural components.
The components of these articulated structures typically undergo large relative displace-
ments and rotations in order to carry out the intended operations. To perform the desired
kinematic motions, various types of mechanical joints are introduced to constrain the rel-
ative motion between the various components. New technology needs of both the space
and robotics industries have increased the demand for accurate numerical simulations of
the effect of component flexibility on the performance of multibody systems. A significant
coupling between the gross structural motion and the elastic deformation can be expe-
rienced by typical applications in which lightweight structures with higher flexibility are
required to operate with greater positioning accuracy and at higher speeds. To capture
this phenomenon, a realistic mathematical model of the structural component that can
readily be incorporated into a general multibody dynamics methodology is necessary.

Two basic approaches, the floating frame approach and the nonlinear continuum ap-
proach, exist for the modeling of flexible components within a general multibody system.
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The floating frame approach introduces a moving reference frame to follow some overall
mean rigid body motion of the beam; the elastic deformation of the beam is then de-
scribed relative to this moving reference! . With this approach, the classical multi-rigid
body analysis was extended to include structural flexibility by superposing existing linear
deformation descriptions onto the rigid motions of the floating reference frame’:8. The
definition of such a mean axis system and the corresponding deformation modes within
the general context of the finite element method has been presented®—!!. To minimize the
number of elastic coordinates, coordinate transformations from the physical elastic coor-
dinates to modal coordinates were performed within the multibody dynamics context 12,
and static correction modes were used in conjunction with the normal modes of vibration
to account for reaction forces and torques transmitted to the components through joint
connections'®!. An alternative choice of a floating reference frame for finite element appli-
cations, termed the convected coordinate system, was introduced as a simple separation of
the rigid body motion and the structural deformation for a given finite element!5=18. All of
these studies, however, are limited by the assumption of linear deformation theory which is
inadequate to capture certain nonlinear phenomena. Nonlinear deformation theories must
be taken into account for such instances as the geometric stiffening of a spinning beam?!®:2
in which the structural component experiences a centrifugal force as well as applications
in which the components necessarily have low mass and very high flexibility. Extensions
of the original approach to model the nonlinear effects include the substructuring tech-
nique in which the component is further partitioned into substructures each with a local
reference frame where normal vibration and static correction modes can then be used to
model the deformation?!, and the finite element incorporation of a nonlinear Green strain
measure????, The resulting equations of motion of the floating frame approach, written in
terms of a set of reference coordinates and a set of relative elastic coordinates, inherently
contain a complex coupling of the gross motion and the elastic deformation modes.

Recently, a fully nonlinear continuum approach to describe the dynamics of the flexible
beam has been pursued?* 2%, Through the use of finite-deformation rod theories?®~32, the
approach is capable of directly accounting for both finite rotation kinematics and large
deformations of the beam component. Since the motion due to rigid rotations of the beam
is not distinguished from that due to deformations, the need for a floating reference frame
is completely obviated and the component inertia is identical in form to that of a rigid
body. The inherent nonlinear coupling between the gross body motion and the elastic
deformation is transferred to the stiffness part of the equations of motion. The key to
the successful adoption of this approach is to develop a computational procedure for the
nonlinear internal force term that preserves rigid body motions.

The aim of this paper is to incorporate the nonlinear continuum formulation of the
spatial beam motion into a general multibody dynamics software methodology. The present
formulation employs a convected coordinate representation of physical Cauchy stresses
and corresponding set of physical strains. This representation naturally lends itself to the
“software in the real-time experiment” loop as sensors measure only physical quantities.
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Another advantage of the formulation is that the degrees of freedom of the beam component
embody both the rigid and flexible deformation motions. The task for incorporating the
multibody system constraints becomes straightforward, and the equations of motion for an
arbitrary configuration of flexible beams and rigid bodies can automatically be generated
in terms of an identical set of physical coordinates. Numerical solution procedures for
the integration of spatial kinematic systems can then be directly applied to these physical
coordinates. Such a universal treatment is not applicable within the context of the floating
frame approach as the reference and elastic coordinate definitions are of highly different
character.

The rest of the paper will be organized as follows. Section 2 will detail the kinematic
description of the continuum beam in which the total motion is referred directly to the
inertial reference frame. The principle of virtual work of a continuum as specialized to
the spatial motion of the beam component is detailed in Section 3. The subsequent finite
element discretization of the beam component and overall multibody system equations are
then presented. Section 4 will summarize the staggered procedure for the integration of
multibody dynamic systems. The virtual work expression is used to derive the method
of computation of the internal force, and Section 5 will address this algorithmic treat-
ment of the nonlinear stiffness operator. Section 6 will present some example problems
demonstrating the software capabilities.

2. Beam Kinematics

The present formulation adopts an inertial reference frame for describing the trans-
lational motions and a body-fixed frame for the rotational motions. The consequence of
this description is that the translational and rotational variables embody information due
to both rigid rotations and deformations of the beam. The configuration of the beam, as
shown in Figure 1, is completely characterized using a position vector locating the neutral
axis of the beam from the inertial origin and a body-fixed frame representing the orienta-
tion of the cross-section with respect to the inertial reference frame. The position vector
r locating an arbitrary particle point on the beam is thus described as

r = (X +u)fe + Thb (2.1)

where “boldface” symbols represent three subscripted vectors and the normal type symbols
represent three components of a given vector; e = { e;, ez, eg }T represents the three
orthogonal vectors defining the inertial reference frame; b = { by, b2, bg }T represents
the body-fixed reference frame which is attached to and rotates with the beam cross section;
X = { X1,X2,X3 }7 represents the inertial components of the original neutral axis
position; u = { u;,us,u3 }7 represents the inertial components of the subsequent total
translational displacement of the neutral axis, and ¢7 = {0,¢;,¢3 } are the body-fixed
components of the distance from the beam neutral-axis to the material point located on
the deformed beam cross-section. It is noted that the beam cross-section is allowed to
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rotate such that it is not necessarily perpendicular to the neutral axis in order to model
transverse shear deformations. Warping deformation of the cross-section is not taken into
consideration.

In order to derive the necessary time derivatives for the description of the large rotation
dynamics, we employ the well known formula33:

d de dt
7 T - @ 4+ wX (2.2)

where w is the angular velocity vector and the superscripts e and b indicate that the
derivatives are to be those observed in the inertial (space) and body (rotating) system of
axes respectively. The above is expressed in the matrix form to act on the body frame
components of a given vector

d db -
E=E+w, (23)

and the velocity and acceleration of the position vector (2.1) are

dr duT

E = W e + ZT(DT b
dzr dzuT T dbC:JT ~T~T (24)
F = di2 e + ¢ ( 7 W w ) b
Given the following relation between the b-basis and the e-basis
b = Re (2.5)

where R is a (3 x 3) orthogonal transformation matrix, the body frame components of the
skew-symmetric angular velocity tensor ( &7 ) are

oT = %RT : (2.6)

A conjugate virtual rotation tensor is defined analogous to the above as
6aT = 6RRT | (2.7)
and the variation of the position vector (2.1) is given as
ér = bufe + £7667Tb . (2.8)

The equations of motion as derived from the stated beam kinematic description will be
discussed next.



3. Spatial Beam Equations of Motion

The principle of virtual work, which is simply a ‘weak’ or variational form of Cauchy’s
differential equations of motion for the equilibrium of a given set of particles of a continuum,
is stated as3*

/57‘,’ pri dV  + /Ufj Obr, av = / orifi dV + /51‘,‘t,' as . (3.1)
1% 1% 51‘1 1% s

The cartesian coordinates z; represent the particle position after some deformation has
taken place, ér; a kinematically admissible virtual displacement, 7; the acceleration, f;
the external force per unit mass, and ¢; the stress vector acting on a surface with outward
normal components n,. Likewise, of; represents the cartesian components of the Cauchy
stress tensor, and p is the mass density. The expression is tailored for the continuum
beam by using the kinematic relations (2.1), (2.4), and (2.8) for the components z;, ér;,
and 7; respectively. As well as providing the basis for a finite element approximation
techniques, the variational formulation readily lends itself to the derivation of incremental
strain-displacement relations as deduced from the derivatives of the virtual displacement
components. The present formulation employs a physical stress measure defined as a force
per unit deformed area and the conjugate physical strain increments based on the de-
formed coordinates. As such, the formulation can be recast into a convected coordinate
system moving with the beam, thus simplifying the stress and strain computational proce-
dures. The practical advantages of such a formalism are in real-time software simulation
experiments as the computed physical quantities correspond to the actual stress/strain
measurements of the sensors located and operating on the deformed structure.

For notational convenience and subsequent finite element discretization, the principle
of virtual work is expressed in the following operator form:

§FT + 6F5 = 6FF 4+ 6FT (3.2)
where the inertia operator § F!, internal force operator § F°, external force operator §FE,
and traction operator §FT are identified from (3.1). Explicit expressions for the various
operators incorporating the large rotation beam kinematics are derived in Sections 3.1 to

3.3. The finite element discretizations are given in Section 3.4, and the incorporation of
the beam formulation into the multibody dynamics framework is discussed in Section 3.5.

3.1 Spatial Beam Inertia Operator

The inertia operator was defined from (3.1) as

§F1 = /par,-f,- dv = /p&r-i‘dV (3.3)
v v

5



from which an expression can be derived directly from the kinematic equations (2.4) and
(2.8). If the origin of the body-fixed basis is located at the centroid of the cross-section,
the following simple expression results for § F!:
pA L2
§FT = / { 6uT 6aT } ,. ds (3.4)
4 JLe + oJw
where

/pe”ZTdA = J
A

represents the inertia tensor of the beam cross-section and ds represents the remaining
integration to be performed over a beam length parameter. The translational inertia is
completely decoupled from the rotary inertia and is of the same form as that seen in rigid
body dynamics. This is due to the dual choice of the translational displacements measured
in the inertial basis and the angular velocity measured in the body-fixed basis located at
the center of mass of the cross-section.

3.2 Spatial Beam Internal Force Operator

The internal force operator was defined in (3.1) as

s _ Zolr e =

SF> = S = o dV (3.5)
identifying as conjugate quantities the virtual displacement gradient and the Cauchy stress
tensor. This form of the internal force along with the beam kinematic description will be
used to deduce a set of virtual strain-displacement relations that are invariant to rigid body
motions. The corresponding conjugate stress tensor will be obtained from an objective
incremental procedure that relates incremental strains obtained from the virtual strain
tensor to Cauchy stress increments. Thus the internal force term will be derived completely
from the original definition of the beam kinematics without making an a priori definition
of the existing strains or stresses.

A physically appealing decomposition of the stress and virtual strain tensors into an
alternative beam reference frame which lies tangent to the deformed neutral axis is intro-
duced to provide conceptual simplifications in the derivation and subsequent computations.
Certain stress states referenced to this convected frame are kinematically required to van-
ish in a beam formulation. When applied to the convected frame stress components, this
choice also leads the task of stress update computations to a simple additive procedure.
To this end, we introduce a convected reference frame, denoted by a, which is related to
the inertial reference frame e by

a = Te, a = {ajag,a; }T . (3.6)
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For implementation purposes within the context of the finite element method, the con-
vected frame will be constant on the element level and thus is similar in concept to that
introduced by Belytschko et al.!®16, It is noted that this reference frame does not coincide
with the body frame b attached to the cross-section. The relative difference between these
two reference frames is represented by the rotation matrix S which models the effects of
transverse shear and torsion deformation as

b = Sa, R = ST , (3.7)

and the latter interdependence between the rotation matrices is established.
The internal force operator, originally characterized by the inertial frame components
of the Cauchy stress tensor ( of; ) and conjugate virtual displacement gradient, will equiv-

alently be expressed in terms of the convected frame components of the stress tensor ( on)
and a corresponding convected virtual displacement gradient as

obr; Oér;
ot dV = / Toi o g2 4V . 3.8
v Oz; Y v o, ™k (3:8)

The symmetric portion of the transformed deformation gradient is used to define the virtual
strain tensor 0¢% , as

§FS =

1 aér; a5ri

e, = = Thi — + Tk

mk 2 ( mi a{k ki a{m )
which is an objective tensor invariant to arbitrary rigid body motions. The internal force,
written in terms of the convected frame tensors, will be expressed in vector format as

(3.9)

6655

§FS = /55;15 a':nk dV = /{0’“ 35,, 35(} 555,, dv (3.10)
v |4 6EEC

where the notation

& = {&et} = {&n¢), O = O + O

denotes the coordinates of the convected reference frame and the engineering shear strain
definitions respectively. The rest of the convected frame strain components

beqn , becc 5 bEn¢

are identically equal to zero due to the original assumptions of the beam kinematics.

A set of virtual strain-displacement relations can be derived from the expressions (2.8)

and (3.9). The final result is expressed as

5655 :
8¢ ¢ = &y + €T 6k (3.11)



0
by = T== + ¢ —68 % , 6x =
682

0é6s

halidag) _ T
g 0 08 =8Th (1

and is comparable to that of Reissner®’. In the above expressions, &+ represents the
membrane and two transverse shear strains, é« the torsion and two bending strains, and
6 the virtual rotations of the cross-section referred to the convected frame.

In an analogous manner the total stress state is expressed as

ey

Oy = o, + (T o, (3.13)

to be obtained from a separate stress update procedure. A substitution of (3.11) and (3.13)
into (3.10), and a spatial integration over a symmetric cross-sectional area results in the
following expression for the internal force

§FS = / { 64T Ny + 6sT M.} dE (3.14)
4

where N, represent the axial and transverse shear forces per unit length, and M, represent
the torsional and bending moments per unit length as given by

N, = /adA, M, = /ZTadA : (3.15)
A A

To be consistent with the inertia operator derived in (3.4), the above is written as

§FS = /f {6uT 6aT} [ BT {ﬁ:} d¢ (3.16)

which involves a transformation back to the body frame components of the virtual rotations
and also an identification of the desired incremental strain-displacement matrix B. To
effect the change of the body reference frame of the cross-section orientation in space with
respect to the constant convected reference frame, we invoke the following relations:

6“5,5 _ T 3“50{ _ T 6”50{ .
5 = S % " S 5 Ks ba ) (3.17)
kL = 'S sT (3.18)




which are completely analogous to those relating changes in the time derivative given in
(2.3) and (2.6). The strain operator | B | of (3.16) is then recognized as

T i ST ) 0 0 0
[B] = 5¢ ) o5 , 4, = |0 0 -1 (3.19)

It remains to provide a procedure for updating o and o, in order to compute N, and
M. For this purpose, we employ the following rate-type law that relates the instantaneous
rate of stress to the instantaneous rate of deformation:

where crimp represents the material response tensor, and ¢§; and €7,, represent the
convected frame stress and strain rates, respectively. This approximate constitutive law can
be derived by transforming the Truesdell rate equation®®, which is an objective equation
based on inertial components of Cauchy stresses and the velocity gradient tensor, to the
convected basis. This equation is then integrated in time as
tn !
o8, " = 08"+ / Chimp % dt
tn (3.21)

_ a " Ac?

to define the stress update procedure. The evaluation of the strain increments A% , to

mp’

be defined from the virtual strains (3.12), will be detailed in Section 5.

3.3 Spatial Beam External Force and Traction Operator

The external force operator defined in (3.1) as
§FF = / éri fi dV
1%
has the final resultant form
§FF = / { 6uT éaT } { ’;,, } d¢ (3.22)
3

where f° represents the inertial components of a force per unit length acting on the beam
neutral axis and f® represents the body-fixed components of a moment per unit length
acting on the beam cross-section. The traction operator defined as

§FT = /5r,- t; dS (3.23)
S
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acts on the exterior surfaces of the beam as natural boundary conditions.

3.4 Finite Element Discretization

The variational form of the partial differential equations representing the spatial dy-
namics of a continuous beam presented in the preceding sections provide a basis for the
finite element method to be used as a spatial discretization procedure®®. In the present
study, we restrict ourselves to the use of linear shape functions to approximate the dis-
placement fleld along the beam, viz.,

npe

u = Z Nrug (3.24)

I=1

where N denotes the spatial linear shape functions, u; represents the degrees of freedom
at the element nodes, and npe denotes the number of nodes per element. The element
inertia operator, from (3.4), is written as

npe npe 9 b

du d°w

r _ T E K T E K

§F1 = ;;1 { 6ur pAMY —= + 6af pJ; MYy —
T npe (3.25)
+ ZéaT DE
I=1
where
MG, = / Nr Nk d¢ DEw); = /(L:)Jw)[ d¢
¢ 3

represent the element mass matrix and nonlinear angular acceleration vector. The former
will be evaluated as a standard lumped mass matrix for the computational efficiency of
explicit integration techniques to be described in Section 4, and the latter will be evalu-
ated from an average of the element nodal angular velocities. The element internal force
operator, from (3.16), is written as

npe

r(N " ge B
§FS = Y {6ur éas} [ BE] {AIV} = Y {6ur Sas} {Sé} (3.26)
I=1 " I=1

where the evaluation of the element strain operator

; T%’L iy Ny ST
(55] = | dt (3.27)
¢ 0 ST (&sNr + 2)
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and the resultant element stresses N, and M., as defined in (3.19) and (3.15) respectively,
will be presented in detail in Section 5. The element external force operator, from (3.22),
is written as
npe e
5FE = Z {511.[ 5011} {f{,} y f;’b = / Ny fe’b df (3.28)
I=1 fI §
and the traction operator is implemented as boundary conditions on the nodes. The
equations of motion in terms of nodal degrees of freedom ( §uq4, dag ) for the entire beam are
obtained from an assembly of the above element operators. For the unconstrained beam,
these nodal virtual displacements and rotations are arbitrary independent variations, and
the discrete equations of motion are written as

My 0 iig 0 S fi
+ +
0 Ju wq Dy(w) S} g

where My, J4 represent the assembled mass and inertia matrices, and D4(w), S4, fa
represent the assembled nonlinear acceleration, internal force, and external force vectors
respectively.

(3.29)

3.5 Extension to Multibody Dynamics

The present formulation of spatial beam dynamics as given by (3.29) can readily be
incorporated into a general multibody dynamics methodology. The degrees of freedom of a
rigid body, namely the inertially-based translational position of the center of mass and the
rotational orientation of the body reference frame, coincide with the degrees of freedom
of the nodal coordinates of the present beam components. Thus the equations of motion
(3.29) can be specialized to represent a rigid body system by setting the internal force Sy
equal to zero.

It remains to augment both the holonomic and nonholonomic constraint conditions
modeling the contacts among the various bodies to the equations of motion. For this pur-
pose, the Lagrange multiplier technique is used to couple the algebraic constraint equations
with the differential equations of motion of the generalized coordinates by augmenting the
virtual work of the unconstrained system (3.2) with the virtual work required to enforce
the constraints. Given a set of equations representing holonomic constraint conditions
between the displacement coordinates as

0%y

By(ut) = 0, &y = —"b6u = Bybu = 0 (3.30)

and a set representing nonholonomic constraint conditions between the virtual displace-
ments and rotations as

§dn (u,bu,R,6a) = BN{§Z} =0 , (3.31)
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the virtual work expression (3.2) of the unconstrained system is modified to’ account for
the constraint via Lagrange’s multipliers A as3’

§FT + 6F° 4+ Ay 6@y + AN 60y = 6FF 4+ §FT

The virtual displacements and rotations of the generalized coordinates can now be treated
as arbitrary independent variations in the modified virtual work expression. The equations
of motion for constrained flexible multibody systems with respect to a set of generalized
coordinates ( %,w ) denoting both the nodal coordinates of the flexible members and the
physical coordinates of the rigid bodies can be expressed as

o S5} e - {8 5
where

(&) = oo at 2 = 3] 2 = {1} o

in which D(w) represents the nonlinear acceleration, S the internal force vector, f the
external force vector, and BT )\ the constraint force vector. As an additional number of
unknown Lagrange multipliers A for each constraint condition have been introduced along
with the generalized coordinates for each degree of freedom, the above system of equations
must be augmented with the constraint equations themselves to achieve a determined
system of equations.

4. Time Integration Techniques for Constrained Systems

The present methodology to formulate the equations of motion of an arbitrary assem-
blage of interconnected flexible beams and rigid bodies is readily adaptable for use with
existing multibody dynamics solution techniques. The equations (3.32) model the beam
components with degrees of freedom u and w that embody both the rigid and flexible
deformation motions. As such there is no need to solve separately generalized coordi-
nates denoting the flexible motion from a reference set of coordinates denoting the rigid
motion. In addition, as the nodal coordinates of the beam components are defined in
the same kinematic manner as the physical coordinates of the rigid body components, no
distinction need be made between the treatment of the flexible and rigid components of
the multibody system other than the calculation of the internal force of the flexible mem-
ber. Therefore, the salient feature of this type of formulation is that numerical solution
procedures for the integration of spatial kinematic systems can be directly applied to the
generalized coordinates of both the rigid and flexible components.

A multibody dynamics solution procedure, originally demonstrated on rigid body sys-
tems in previous studies*®~*!, is adopted for the above flexible multibody system equations

12



of motion. The key to the procedure is a staggered implementation of the separate gener-
alized coordinate integrator and constraint force solver modules. An improved variation of
the explicit central difference algorithm, described in Section 4.1, is used to integrate the
translational displacements and the angular velocity of the system. An algorithm based on
the Euler parameter representation of finite rotations, described in Section 4.2, is used to
update the configuration orientation from the angular velocity. The computations of the
Lagrange multipliers are then carried out in a separate routine, described in Section 4.3,
which implicitly integrates a stabilized companion differential equation for the constraint
forces in time.

4.1 Explicit Generalized Coordinate Integrator

The central difference explicit integration algorithm is written as

(in+15 = dn_% + hJ“
d"*! = d° + hdrt? (4.1)
Jn+1 — M—l Q ( dn+1 : d'n+l )

where the superscript n = 1,2,3,.-- designates the discrete time station ¢t = n h and
h is the stepsize. Unlike in conventional structural dynamics, a straightforward application
of (4.1) on the rotational equations

Jw+u~)Jw=fu

inherent in the multibody system equations of motion (3.32) leads to computational dif-
ficulties. In order to compute w™*t!, it is necessary to have w"™*!. However, due to the
inherent nature of the algorithm, only w™*? is available. It was shown*! that the naive
approximation

w'tl o~ ntE (4.2)

results in a computationally unstable integration of the angular velocity w. To correct
this within the context of explicit computational sequences, an interlaced application of
the central difference algorithm such that the displacements and velocities are advanced
one-half time step at a time was proposed*®*!. The algorithm advances the solution to
the time station t"*3 given the solutions of the two preceding time stations t"=% and ¢"
as follows:
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(a) T ST B

(b) Wttd o= antt o4 e

(¢) Mias SESRLES BT

(d) "t o= g (wrth)

() sn+ty S(un+§,qn+§)

() D™ = D(w™t) |, i = f(anth
(g) Qn+l,~ - Q(fn+§’5n+!;,Dn+J;)

(B AT = (amQrt)

) o= MT(QUYY - BT

G)  om™F o= JT(QIT - BTam)

The evaluation of the generalized rotational parameters g to be obtained from the angular
velocity, as represented by step (d), will be detailed in Section 4.2. The evaluation of the
internal force S from the current configuration coordinates u and ¢, as represented by
step (e), will be detailed in Section 5. The evaluation of the Lagrange multipliers A, as
represented by step (h), will be detailed in Section 4.3. The algorithm proceeds to the next
half time station t**!, now given the solutions at time stations t® and t"*+% and thus the
force and acceleration terms are evaluated twice each time step. The algorithm is initiated
for time t% given initial conditions for time ¢° in the following manner:

(k) Wb o= @0 4 giz"
) wi = W o+ gd)o
(m) ' = u® 4+ ha?

Wi

10 1
() Wb o= S(a 4 o)

from which steps (d) through () can be performed.

One last remark will be made on the angular velocity integration. The equations of
motion were derived using body frame angular velocity components. The integration of
these quantities shown in step (c) is not formally correct as the components at different
time steps are defined with respect to different body-fixed frames. This concern can be
eliminated by applying the central difference update to the inertial components of the
angular velocity. Step (d) will then consist of an appropriate function of inertial angular
velocity components. The integrated inertial angular velocities must be transformed to the
moving reference frame before evaluating steps (f) and (j) since the equations of motion
are written with respect to the body frame angular velocity description. The angular

acceleration evaluated in step (j) must then be transformed back to inertial reference
frame before being integrated again in step (c).
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4.2 Rotational Parameter Integration

The two-stage explicit integrator was applied to the translational displacement and
velocity coordinates and the angular velocity coordinates. As the rotational orientation
parameters are not directly integrable from the angular velocity vector, a procedure must
be developed to update the configuration orientation given the angular velocity. Any finite
rotation can be uniquely expressed by a rotation angle § and an appropriate rotation axis
n 2. Two rotational parameterizations based on this description are the rotational vector
( © ) and the Euler parameters ( g¢,q ) defined respectively as

)
— 0 — cos 3
© = 6n , {q} = {nsing} (4.3)

The three parameters of the rotational vector are independent, while the four Euler pa-
rameters are subject to the constraints

% +q'q =1 (4.4)

The rotation matrix is represented as a function of the Euler parameters as

20 +4¢?) -1  2(q192+9093) 2(q193 — 0g2)
R = 2(q192 — 9093) - 2(g2+4¢3) -1  2(q293 + qoq1) (4.5)
2(q193 + 9092)  2(9293 — goqn)  2Agd +¢?) -1

The body frame components of the angular velocity tensor defined in (2.6) as

. 0 w3 —wsy w1
L:J,;T = RRT = —W3 0 (735 , wp = Wo
wWo =W 0 w3 )y

has the Euler parameter representation*?

{fb} = 2[ _q(; qolciTq ]{z:} | (4.6)

A similar expression for the inertial components of the angular velocity tensor

o7 = RTOJR = RTR (4.7)

Lo -l wfe S @

The above definitions can be inverted to yield the expressions

{?}'= [u?b _;,3{]{?}=Ab(wb){2’} (4.9)
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for the body frame components and

{‘2’}:%[:} —gg]{?}=Ae(we){"2’} (4.10)

for the inertial frame components. A general representation

q

will be used to denote (4.9) or (4.10) given the angular velocity description. These in-
verse expressions are derived from (4.6) and (4.8) by incorporating the derivative of the
constraint equation (4.4) '

§ = Aw)g, ¢ = {q°} (4.11)

dogo + 4'q =0 . (4.12)

The configuration orientation is obtained from a numerical time discretization of the
above Euler parameter - angular velocity representations. Among several possibilities, the
approximation that satisfies the constraint condition (4.12) in the discrete sense is the
following trapezoidal formula

1 1
(" = g") = AWM S (" 4 gn) (413)

Due to the structure of A, the solution matrix can be analytically inverted such that the
discrete orientation update

"t = £l [T + h AW [T + h Aty ] ¢g" (4.14)
D 2 2
where
h2 2 2 2

results. The final result is normalized to satisfy the constraint (4.4). The above equation
is valid for either the body or inertial frame decomposition of the angular velocity as long
as the corresponding form of A from (4.9) or (4.10) is used. The resulting update (4.14)
involves only explicit computations and is readily incorporated into the two-stage explicit
integration procedure.

4.3 Constraint Force Solution Procedure

A partitioned solution procedure has been employed to solve the generalized coor-
dinates separately from the Lagrange multipliers. To effect a partitioned solution of the
constraints, a stabilized companion differential equation for the constraint forces is formed
by adopting the penalty procedure®®:39. The penalty procedure uses the equations

1 : 1.
A = - &y AN = - PN e— 0 (4.15)
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as the basic constraint equations instead of (3.30) and (3.31) for the holonomic and the
nonholonomic constraint conditions respectively. The penalty equations can be written in

the general form, from (3.30) and (3.31), as

w

A=-B:, : = {“} (4.16)

The numerical solution to the above companion differential equation is obtained as follows.
The constrained equations of motion (3.32) are integrated once from (3.20) using the
implicit integration rule

Ak TN LR S Ll B

<~

o] >

imE = s M (QrHE — BT Ay 4o (4.17)

This expression is substituted into (4.16) to obtain the stabilized differential equation for
the Lagrange multipliers

eAntd 4 §B MTIBT Avth = B M QR 4 B (4.18)

The same integration rule is applied to this equation to result in the discrete update
(eI + 682BMBT)A™E = an 4 1t (4.19)

Pt = 2B MUIQTY + 5B (4.20)

The same procedure can also be derived with different integration rules. The update of
the Lagrange multipliers, performed for each half time step, is easily adapted into the
two-stage explicit integration procedure.

5. Internal Force Computations

The algorithmic treatment of the nonlinear stiffness operator is addressed in this
section. The explicit generalized coordinate integrator of the previous section requires an
evaluation of the internal force at a current time step ¢t®*! from the coordinates of the
beam configuration at that time. The internal force is first evaluated on the element level
for all the finite elements comprising the flexible component from (3.26) as

St : (N, P

= [BE] { M’*} (5.1)
s Ms

after which these individual element computations are assembled to form the internal force

of the discrete beam. The necessary computations to be described are the evaluations of
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the discrete strain operator [ BE ] defined in (3.23) and the resultant stresses V., and
M, respectively.

The Timoshenko beam formulation in which the translational degrees of freedom are
independent from the rotational degrees of freedom requires an approximation within the
element such that these variables will be continuous across the element boundaries. Thus
a two node finite element representing a linear interpolation of the translational and rota-
tional variables is a sufficient discretization of the beam. To avoid the locking phenomenon,
the interpolation of the rotational degrees of freedom associated with the transverse shear
strain is underintegrated. After incorporating these concepts into (3.27), the resulting
expression for the discrete strain operator is given by

-iT iT 1, 8T 11, 8T
0 0 ST(ks- 1) ST (Rs + D)
which acts on the virtual displacements and rotations
{ 6’U1 6‘U.2 6&1 6(!2 }T

where the subscripts refer to the element node number. The convected frame T matrix,
body frame curvature tensor %s, and element neutral-axis length £ are constant quantities
over the element domain, while the relative cross-section deformation S matrices are nodal
quantities. The computation of these terms from the nodal displacement and rotation
coordinates of the current configuration are detailed in Section 5.1.

A stress update procedure of the form

SYS IR I NS Py 9

is used to derive the resultant stresses of the current configuration at time ¢"*! from the
resultant stresses of the past configuration at time ¢t™. The simple additive form of the
procedure, which was derived from the numerical integration of a rate-type constitutive
law, is due to the use of a convected frame stress and conjugate strain decomposition. The
resultant stress increments AN, and AM, are obtained via

EA 0 0 GJ 0 0
AN,= |0 GA 0 |Ay , AMc= |0 EILb 0 |Ac . (54)
0 0 GA 0 0 EI

A set of strain increments Ay and Ak, which denote the change from time t® to t"*!, are
defined as a finite analogy to the infinitesimal virtual strains 6 and éx derived in Section
2. A specific computational procedure designed for use with this incremental interpretation
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of the continuum-based formulation such that the computed finite strain increments are
invariant to arbitrary rigid body motions is discussed in Section 5.2.

5.1 Computation of the Strain Operator

The reference frames introduced in the formulation, namely the body frame b attached
to the cross-section and the convected frame a tangent to the deformed neutral axis, are
computed as follows. The Euler parameters representing the orientation of the beam cross-
section at the finite element nodes are output from the generalized coordinate integrator
at each time step. The rotation matrices R, , representing the b reference frame at each
element node, are thus computed directly from the Euler parameter representation of a
rotation matrix (4.5). This matrix contains rotational information of both that due to
the rigid motion of the convected reference frame and the transverse shear and torsional
deformations of the cross-section relative to the convected frame.

The neutral axis of the finite element is defined as the straight line connecting the
two element nodes, the tangent of which is trivial, and is directly calculated from the
translational displacements output from the generalized coordinate integrator. Given this
tangent a;, the a; vector is defined as the cross product of a; with the bj axis of Ry,
and the remaining axis a3 defined to complete the right-hand coordinate system. The
computed axis { a; , a2 , a3 }, as shown in Figure 2, define the rows of the T matrix.
The rotation matrices S; , defined at each element node as the relative difference between
the element convected frame and the nodal body frames, are thus

S = RyTT |, =12 . (5.5)

The procedure is an approximation applicable for moderate strains such that the S; matri-
ces contain information solely due to transverse shear and torsional deformations*?. The
rotation matrices of the discrete strain operator (5.2) have thus been defined.

The body frame components of the curvature tensor #% defined in (3.18) as

a 0 K3 —K2 K1
;ég' = 68 S ST = —K3 0 K1 , K = Ko
€ Ko —Kj 0 K3
are equivalent to
- 0 R
kL = B¢ RT (5.6)

as the convected frame T matrix is defined to be constant along the element domain where
the differentiation is performed. This definition is completely analogous to the angular
velocity tensor defined in (2.6) and motivates the use of an Euler parameter representation
of the curvature completely analogous to the Euler parameter representation of angular
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velocity (4.6) as a basis for the computation of the element curvature from the nodal
rotational variables. The Euler parameter - curvature representation is

3
0 90 q” } {Ta%“} dq .
= 2 -~ = E a —_ 7
{} =2 2 9 X (1) 2 67
subject to the constraints
dq dq”

2 T _ i {1} ‘1 —

% +da =1, Zlo+za=0 . (5.8)

An approximation to be used in (5.7) that satisfies the constraint conditions in the discrete
sense
9q

1
6£=2(¢12—91), qa =

o9 |—

(a1 + g2 )

13 C a1+ a2 ) |
is evaluated using the Euler parameters of the element nodes output from the generalized

coordinate integrator. It will be shown that this discrete computation is invariant to rigid
rotations contained in the total nodal Euler parameters.

(5.9)

'The simple normalized average of the nodal Euler parameters has a physical inter-
pretation. The Euler parameters g, correspond to an average orientation, in a geometric
sense, of the two nodal cross-section orientations. This is demonstrated from the following
example characterizing a state of constant curvature of a finite element shown in Figure 3.
The orientation of the convected element frame is characterized by a rotation of an angle
¢ about an axis n, from the inertial reference frame, and the relative nodal cross-section
orientations are characterized by a rotation from the convected frame of angles —r and
about axis n; for nodes 1 and 2 respectively. The Euler parameters designating the total

cross section orientation of the two nodes due to these combined effects can be expressed
as

cos%cos% + ng-ny sin%sin%
1 = . . . .
? — cos€sinZ ny + cosZsin? n, — sinZsin 2 n, x n,

2 2 2 2 2 2
X . 5.10

cos-g-’cos-’gi — Ng- Ny sm%sm% ( )

q2 = . . . .
cos?sm%nb + cos%sm% n, + sm%sm%naxnb

which is obtained by applying the quaternion product rule** to the Euler parameter defi-

nitions
cos £ cos = cos &
qu = - r2 ) Qr, = . r 2 L] Qa = . 2 2
—sinZ n sin ¥ ny Sin $ N,

of the relative nodal orientations and the convected orientation respectively. The average
of the two nodal Euler parameters (5.10) is

1 cos € cos Z
5(‘114‘92):{ 2¢2}

o
COs 7 sin 5 n,
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the norm of which is cos . When normalized, the above average is identical to the average
orientation of the two nodes given by q,. It can be shown that for this example the dis-
cretization (5.9) when substituted into (5.7) gives the finite element curvature computation

4 T
ko= gsingm
which approximates the true curvature strain %‘rnb. The computation retains only the
rotation parameters 7 originally defined relative to the rigid body orientation, and is thus
invariant to the rigid body motions. For instances when the validity of the approximation
is challenged, an incremental curvature computation can be made as discussed in the next
section, from which the total curvature is obtained from an appropriate update procedure.

5.2 Computation of the Strain Increments

The strain increments are defined from the virtual strains (3.12) by replacing the
variational operator § with an incremental operator A as

. 0 .
Ay = T 98u + —ABsy , Ax = B_AB_
o€ 3 73

AfBy

such that Au and AS are finite analogs of the infinitesimal displacements and rotations
éu and 63. For computation purposes, it becomes necessary to decompose the convected
frame components of the virtual rotations of the of the cross-section 3 into a rotation due
to rigid body motion é¢ and that due to deformations §7 as

03 = bra + bp . (5.11)
This relation is derived by substituting the following definitions
66T = sTsaTs , a7 = 6RR7
6T = 61T |, 677 = 88T |, 6T = sTsiTs

into the identity
R = ST, SR = 6ST + ST

It is noted that éa, 8¢, and 67 represent moving frame or spatial components referred to
the defining reference frame, whereas §3 and §7, represent material components referred

back to the convected frame. From these definitions, the incremental strain A~ is given
by

A 0 0

A 8A : !

Ay = T 6“ + $Apsp + { —Ar, (5.12)
3 Ay, ATq,
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representing the membrane strain and transverse shear strain increments. Likewise, the
incremental curvature representing the torsion and bending strains is given by

a Ar,
o€

as the incremental rotations Ap defined from the T matrix are constant over the element
length.

Ak = (5.13)

Essential for the use of these incremental strains is a proper definition and subsequent
computation of the finite displacement and finite rotation increments. The incremental
translations are defined by

Au = o™ - 7 (5.14)

as the displacements are true vector quantities. The incremental rotations are defined as
follows. Rotations are updated by the product of orthogonal matrices via either?!

R*H! = R(I) R = eOT R™
. (5.15)
= Rn R(,.) = Rn Ce

using the rotational vectors 6 or © based on the spatial or material reference frames
respectively. It can be seen from the linearizations of the left and right rotational updates?*

R"! ~ R™ + §R
SR = TR = R"OT

that the virtual rotations

6T = 6T TT, 67T = STss
correspond to spatial and material rotation updates
™! = ATT" , S*tl1 = S8"AS (5.16)

respectively. Thus Ay and Ar, are defined as the rotational vectors parameterizing the
matrices AT and AS respectively. Two different approximate methods which then extract
this pseudovector from the given rotation matrix are used to obtain the incremental rota-
tions. The particular approximation methods are chosen such that objective computations
of the incremental strains (5.12) and (5.13) are achieved.

To this end, the first two terms of (5.12)

A 0
oA :

Avy = T afu + -—AAQ,Q:; (5.17)
Apo



must be computed such that the A¢ rotation increment compensates for the rigid rotation
contained in the displacement increment Au defined in (5.14). To accomplish this, Ay is
computed by

AgT = ATt — AT+ (5.18)
where AT"*+% is defined from
1
Tt = exp ( 5887 ) T" = AT™ 3% T" . (5.19)

The computation was derived from the linear approximation
Tn+1 ~ ( I + AQET ) T"

rewritten as

ApT = (T — T ) Tt (5.20)

and introducing (5.19) to achieve a skew symmetric matrix. In order to preserve rigid
motions, the matrix T in the first term of (5.17) must be evaluated as T"*3. This is
shown as follows from an example of the rigid rotation of an element in which Ay; = 0.
From (5.20), it is seen that the rotational term of (5.17) becomes

0 T,
“Apy 3 = - TR (e - t) , te = { To (5.21)
Ap2 Ty3

The finite element evaluation of the displacement term of (5.17) is given by

~

OAu

T3

= T ei ( Aug — Auy ) (5.22)

for the two-noded beam element of length ¢.. For the rigid rotation of the second node
about the first node, the incremental translational displacements are simply

dAu
¢

A‘U.l = 0 N Aug = ﬂe (tsn+1 —tfn) y t?+1 - t? 3

as the direction cosines of the rotation are contained in the first row of the T matrix.
Thus for (5.17) to be identically equal to zero, it is necessary to evaluate (5.22) using
Tn+Y. To obtain the true stretch with respect to the neutral-axis reference frame at
the current configuration, we simply rotate the mid-configuration computation up to the
current configuration as

A 0
A .

ATP: | Tt 666” + { —Aps (5.23)
AQQ



As in the preceding analysis, the incremental displacements for an arbitrary rotation and
stretch are given by

Aul = 0, Auy, = ((@c + d)tfn+1 - £, ten)

where d represents a stretch relative to the original element length £.. The rotational
expression (5.21) remains valid, and the bracketed term in (5.23) becomes

( 7 i y ) T+ tH

Premultiplication of the above by AT™+# results in the final computation

1
(Zi_&)Tmtfm:(e,_i"E)

containing solely a measure of stretch regardless of the magnitude of the rigid rotation.

0

The incremental rotations Ar, used to compute the remaining terms,

0 -
Ay, = { -&r, Aw = 2 6A"a (5.24)
AT,, ¢

representing transverse shear and curvature strains respectively, are computed indepen-
dently from A¢ as follows. The rotation increments A, are obtained from the matrix AS
defined in (5.16) denoting the relative orientation between the current deformation matrix
S"+! and the past deformation matrix S™ rigidly rotated to the current convected frame.
Another method to extract a rotation pseudovector from a given orthogonal rotation ma-
trix given by*3

2(AS; — AST)

A=T
Aa‘ - 1 + tr AS; ’

i=1,2 (5.25)

is used to define Ara at each element node. The above method yields a simpler and
more accurate computation of a rotation vector than (5.18). Whereas (5.18) was necessary
to compute Ay such that the rigid rotations within (5.17) are preserved, (5.25) is used
within (5.24) as this computation is made from matrices which by construction contain
information solely due to deformation. Given the nodal rotation increments, the locking-
free form of the elemental shear strain is obtained from the nodal average as

X 1 .0 1 0
Ar2 = 5§ ~A7, ¢+ 5 { -Ar, :
- Ate, ), - Atq, ),
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and the elemental curvature is computed from the finite element approximation

Ak = % (Ara, — Ar, )

This completes the computational procedures for the incremental strains. The detailed
strain computations of (5.12) and (5.13) are used in (5.4) to determine the stress incre-
ments, from which the current stress state is obtained from the update procedure (5.3).

6. Numerical Examples

The computational techniques, namely the staggered multibody dynamics solution
procedure combining the generalized coordinate integrator and the constraint force solver
discussed in Section 4 and the finite element computations of the beam internal force
discussed in Section 5, have been implemented into a Fortran 77 software package. The
result is a robust method which solves the present formulation of the equations of motion
of an arbitrary assemblage of flexible beams and rigid bodies. In order to demonstrate the
current software capabilities, the following examples highlighting the flexible motion of the
beam component are presented.

The first example is included to verify the geometric stiffening phenomena exhibited
by a rotating beam®'18:21:28 The beam is pinned at the left end; the other end remains
free. The following material and geometric properties were used:

EA=28x10"1, GA=10x10"1b, EI=1.4x 10* b in?

pA =121bm/in, pI=6.0x10"*lbm in, =10 in.

A prescribed angular rotation about the e3 axis of

6 t2 152 2t
o= 517+ 3 (o g5 ~ D] red 0<E< I e

(6t — 45) rad t > 15 sec

is applied at the pinned end. The time history of the tip deflection relative to a refer-
ence frame coinciding with the prescribed angular position and the time history of several
configurations of the beam are given in Figure 4. As alluded to in the introduction, an
overall steady rotation of the beam gives rise to a centrifugal force which is responsible
for a change in the bending stiffness that cannot be predicted using linear deformation
theories. After initial increasing tip deflections, the beam begins to stiffen as the angular
velocity increases due to the centrifugal inertia force. As the angular velocity reaches a
constant state, the beam then reaches a steady state phase of small vibrations. This ex-
ample shows the capability of the nonlinear strain formulation to automatically account
for the geometric stiffening effect. The results are comparable to those presented by Simo
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and Vu-Quoc?®. To reproduce these results with alternative methods as the substructur-
ing technique?!, a convergence analysis based on the selection of mode shapes must be
performed.

The next examples exhibit the combined large deformation and large rotation capa-
bilities of the present formulation. In the first instance, the beam is pinned as above and
is subjected to given initial velocity impulses exciting various deformation mode shapes
under planar motion. The following material and geometric properties were used in order
to witness finite deformations:

EA=40x10"1b, GA=20x1071b, EI=1.3x107 Ibin?

pA =98 lbm/in, pI=33x10"2lbmin, =200 in.

The initial velocity profiles with the resulting time histories of several deformed config-
urations are given in Figures 5, 6, and 7. It is noted the versatility of the formulation
in its ability to capture the response to a variety of situations in which different funda-
mental modes of the beam are excited. The approach avoids the difficulty of tailoring
the selection of modes shapes of the flexible components to the given problem at hand.
The repeatability of the deformation shapes through time is due to the invariance of the
internal force computations to the overall rigid motion. This property of computational
objectivity is further illustrated in Figure 8 which shows the time history of the strain,
kinetic, and total energy over four revolutions for the first bending mode example. The
nature of the time integration and internal force algorithms are such that.the conservation
of energy is retained computationally, as seen by the fact that the total energy remains
constant over all the revolutions. Similar results, not presented within, are obtained for
the other deformation examples.

To present the applicability of the flexible beam component within the multibody
dynamics framework, the final example of a spatial double pendulum is given. The double
pendulum is modeled with two beams; a spherical joint connects the last node of the first
beam to the first node of the second beam and also pins the first node of the first beam.
It is noted that the joint connection can easily be accounted for from a finite element
assemblage which leaves the rotational degrees of freedom free at the hinge location. The
method was used to verify the results obtained using the Lagrange multiplier solver on the
augmented equations described in Section 3.5. In the first case, the pendulum is subjected
to a gravity field in the vertical z-direction and an initial velocity impulse in the horizontal
x-y plane such that soley rigid motion is excited. The problem is run for four cases of
increasing beam flexibility as follows:

1. EA=10x10*1b GA=0.5x10%1b
2. EFA=10x10%1b GA=0.5x10%1
3. EA=20x1021b GA=10x10%0
4. FA=10x10%21b GA=05x1021b

with the remaining parameters
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pA=11lbm/in pl = .833 x 1073 lbm in =1in

held constant. The initial velocity impulse, and the spatial trajectories of the mass
center of the second beam as projected on the x-y and x-z planes is given in Figure 9. The
trajectory of the first case coincides exactly with a rigid body solution to the problem,
and the slight deviation of the trajectories due to the increasing flexibility can be seen.
The energy time histories for the problem, given in Figure 10, verify the computational
objectivity of the algorithm as again energy is identically conserved. Again, the invariance
of the internal force calculations in the three dimensional environment is witnessed by the
negligible strain energy contribution for all of the flexible cases. The time integration of
the spatial kinematics preserves the balance between the kinetic and potential energies of
the problem. Next, the flexible double pendulum is given an initial velocity impulse to
excite deformation motion as well as the rigid motion. For this case the parameters used
were

EA=18x10%1, GA=09x10%1, EI=1.4x10® Ibin?
pA = .98lbm/in, pI =0.67lbmin, [=120 in.

The initial velocity profile, the resulting time histories of several deformed configurations
and energy time history are given in Figure 11, exhibiting the large spatial rotation and
deformation capabilities of the formulation. The energy conservation is retained for the
computations of spatial deformations.

Further examples of large scale multibody systems are in process, and these results
are to be presented in the near future.

7. Concluding Remarks

A flexible beam finite element that is readily incorporated into multibody dynamics
applications has been presented. The beam formulation is based on fully nonlinear strain
measures which remain invariant to rigid body motions. The model retains a Cauchy
stress and physical strain description, and as such it can be easily interfaced with real-
time slewing control applications as the measured strains can directly be used as a feedback
signal without requiring sophisticated transformations. In addition, the formulation uses
an inertial reference for the beam dynamics such that the degrees of freedom of the flexible
component are defined in the same sense as the rigid components by including without dis-
tinction both the rigid and flexible deformation motions. The consequence is adaptability
into multibody dynamics methodologies as numerical solution procedures for the integra-
tion of spatial kinematic systems can directly be applied to the generalized coordinates of
both the rigid and flexible components. The success of the approach relies on an accurate
computation of the nonlinear internal force term. For this reason, the calculation of finite
strain increments has been presented which are invariant to arbitrary rigid motions of the
beam. The proposed methodology is suitable to treat the dynamics of flexible beams which
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undergo a variety of structural deformations in addition to the large overall motions. The
same approach can be used in formulating other types of structural components.
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FIGURES

Figure 1. Beam Kinematics
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Figure 2. Convected Reference Frame

Figure 3. Pure Bending of Beam Element
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Figure 4. Geometric Stiffening ( 5 Elements ):
(a) Tip Deflection vs. Time
(b) Displacement History



~
600

v

o

L]

~

e

ored L . x

1
200 in

(5a)

t = 1.15 sec {{ \)ﬁ t = .01 sec
\// t = 2.30 sec

‘!/

(5b) L,

Figure 5. First Bending Mode ( 8 Elements ):
(a) Initial Beam Position vs. Initial Velocity Profile
(b) Displacement History
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Figure 6. Second Bending Mode ( 12 Elements ):
(a) Initial Beam Position vs. Initial Velocity Profile
(b) Displacement History
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Figure 7. Combination Bending Mode ( 16 Elements ):
(a) Initial Beam Position vs. Initial Velocity Profile
(b) Displacement History
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Figure 9. Spatial Double Pendulum ( 16 Elements ):
(a) Second Beam Trajectory: X-Y Plane
(b) Second Beam Trajectory: X-Z Plane
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Abstract

A parallel partitioning scheme based on physical-coordinate variables is presented to sys-
tematically eliminate system constraint forces and yield the equations of motion of multi-
body dynamics systems in terms of their independent coordinates. Key features of the
present scheme include an explicit determination of the independent coordinates, a par-
allel construction of the null space matrix of the constraint Jacobian matrix, an easy
incorporation of the previously developed two-stage staggered solution procedure, and a
Schur complement based parallel preconditioned conjugate gradient numerical algorithm.



1. Introduction

In the past decade, several stand alone general-purpose multibody simulation codes [1-
11] have achieved progressive development for their capability to apply to multidisciplinary
engineering problems to improve either control system design and verification or system
design and dynamics analysis. As a result, these computer codes have been successfully ap-
plied to a number of multibody dynamics (MBD) problems such as robot arm maneuvers,
spacecrafts and ground vehicle dynamics. However, when systems become very complex,
computational efficiency becomes a dominant concern during the preliminary design stage
that require many analysis iterations. This has motivated us to make an effective use of
parallel computational technology in order to speed up the dynamics analysis of MBD
systems, thus ultimately achieving real-time simulation for large-scale problems. The is-
sues of exploiting the parallelism that are inherent in MBD systems include a versatile
data structure for describing system topology, an automatic procedure to generate system
equations of motion, a streamlined incorporation or elimination of system constraints, a
robust time integration algorithm, and an easy interpretation of the simulation results.

In general, the equations of motion for MBD systems can be generated by employing
a set of generalized coordinates to define the state of the system [6-8]. Note that, the
motions of each body in the system can initially be assumed to be independent of one
another. Kinematic relationships between bodies in the system are then imposed, which
result in the corresponding constraint conditions. If one augments the constraint equations
to the governing equations of motion by introducing the Lagrange multipliers, the resulting
equations of motion are characterized as differential-algebraic equations (DAE).

Since a closed-form solution of DAE is in general not attainable except for highly sim-
plified problems, two different approaches have been developed for the solution of DAE.
The first approach adopts so-called constraint stabilization methods [12,13,17-19,23] which
integrate and solve DAE while attempting to satisfy the constraint equations. From compu-
tational point of view, this approach utilizes a large number of equations yet preserves the
sparsity of the solution matrix and simple expression for the kinematic relationships. The
second approach eliminates system dependent coordinates which is equivalent to eliminat-
ing the Lagrange multipliers from DAE so that a set of second order differential equations
can be obtained. Schemes [7,10,20-22] leading to such approach include the generalized
coordinate partitioning (GCP) scheme, the singular vales decomposition (SVD) scheme
and the null space (NS) scheme. In contrast to the first approach, the second approach
enjoys a minimal set of equations of motion but suffers from dense solution matrices and
highly nonlinear kinematic descriptions.

Numerical experience indicates that constraint stabilization methods are generally
preferred for closed kinematic loops whereas constraint elimination methods are better
suited for open kinematic links. The objective of the paper is to present a parallel constraint
elimination algorithm by constructing the null space of the constraint Jacobian matrix, and
employ a parallel preconditioned conjugate gradient numerical algorithm to solve for the
equations of motion that are given in Schur complement form.

To address the present natural partitioning scheme, the paper is organized as follows.
Section 2 presents the equations of motion that have been derived in DAE form. Section 3
describes the natural partitioning scheme in detail with several example problems. Section
4 applies a parallel computational algorithm to the second order differential equations.
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Section 5 describes a parallel preconditioned conjugate gradient scheme that is used to
find the solution for the independent accelerations. Section 6 reports on some preliminary
results that were obtained using the natural partitioning scheme and the staggered solution
procedure that has been previously developed [15,16].

2. Equations of Motion for Multibody Systems

The equations of motion for a MBD system can be derived and expressed in various
forms depending upon the type of coordinates one has chosen to describe the configuration
of the bodies in the system. In the present derivation, a spatial position vector with respect
to an inertial reference frame is described by using Cartesian coordinate. A body-fixed
coordinate is then attached to the center of mass of each body. The position of a body is
then defined from the origin of the inertial reference frame to the origin of the body-fixed
frame, and the position of a particle at the body is defined from the origin of the body-fixed
frame to the particle. A velocity vector i contains the translational velocity r which is
defined by the inertial frame and angular velocity w which is defined by the body-fixed
frame. When d’Alembert’s principle of virtual work is applied to the entire system plus
the constraint equations via Lagrange multipliers, the equations of motion for a multibody
dynamics system with n physical coordinates and m constraints can be expressed in the
following DAE form :

Mi+BTA=F (2.1)

with holonomic constraints
®(u) =0 (2.2)

The first and second time differentiation of (2.2) yield
&(u) =Bu=0 (2.3)

and . )
®(u)=Bi+Bu=0 (2.4)

where M is the n x n constant mass matrix, B = ®, is the m x n constraint Jacobian
matrix, A is the m corresponding constraint forces, F is the n generalized forces that
include external forces and inertia forces due to centrifugal acceleration, and i consists of
the translational and rotational accelerations.

Note that, for each body u consists of three translational velocity components ex-
pressed in the inertial frame and three angular velocity components expressed in the
body-fixed frame. In other words, they are physical coordinates which are a particular
set of generalized coordinates. In addition, due to the present representation of trans-
lational motion (referred to an inertial frame) and rotational motion (expressed in the
convected frame), the task for identifying the dependent and independent coordinates for
the system constraint equations becomes straightforward, thus leading to the development
of the present natural partitioning scheme.



3. A Natural Partitioning Scheme

In this section, the Lagrange multipliers are eliminated from (2.1) and a set of sec-
ond order differential equations are derived in terms of system independent coordinates.
To determine the system independent coordinates, a natural partitioning scheme is pro-
posed to efficiently construct the null space of the constraint Jacobian matrix. A parallel
methodology is demonstrated if system topologies consist of a number of tree structures.
For a system that contains closed-loops, a cut-joint technique is used so that the present
scheme can be equally applied.

3.1 Constraint Elimination Method For DAE
In constraint elimination, the main task is to find a projection matrix A such that,
when its transposed is post-multiplied by BT A, we have

ATBTA=0 (3.1.1)

This projection matrix can be obtained by expressing the physical velocity 1 in terms of
the independent velocities 0* as

a=Aud' (3.1.2)

Time differentiation of (3.1.2) gives
i = Ad' + Aa’ (3.1.3)

Substituting (3.1.2) into (2.3) yields
Bu = BAG' =0 (3.1.4)

Since u' is a set of independent velocities and in general u* # 0, (3.1.4) implies

BA=0; ATBT =0 (3.1.5)

where A is called the null space of the constraint Jacobian matrix B. Once A is con-
structed, pre-multiplication of (2.1) by AT yields

AT™™i + ATBTA = ATF (3.1.6)

By (3.1.1), the second term on the left hand side of (3.1.6) is equal to zero, hence the
above equation reduces to
ATMi = ATF (3.1.7)

Substituting (3.1.3) into (3.1.7) yields the desired equations of motion in terms of their
independent velocities 1* as

ATMAG = ATF - ATMAW® (3.1.8)

Once the right hand side of (3.1.8) is obtained, the system equations can be written in the
following form :

M'id' =b (3.1.9)



where
M* = ATMA (3.1.10)

b=ATF - ATMAG' (3.1.11)

3.2 A Natural Partitioning Scheme For Open-Loop MBD Systems

To demonstrate the present natural partitioning scheme for open loop systems, a
three-dimensional triple-pendulum problem (Fig. 1) is chosen. The constraint equations
for this problem can be written as

Bu] 0 0 iy

[B21] [Ba22] O iy p =

0  [Baz] [Baa] i3
<] Ry 0 0 0 0 iy
(1] [Re21] [-1] [Rs22] O 0 iz p =0 (3.2.1)
0 0 [1]  [Rszz2] [~I] [Rasa] u3

where the bodies in this pendulum problem are connected by three spherical joints and R,
are function of rotational operators and position vectors from the center of mass of each
body to the position of their connecting joints. To obtain the necessary projection matrix
A, we start with the first row of (3.2.1) :

Byt =[-I, Ry, )4, =0 (3.2.2)
that can be partitioned into g
BBt { o] <o (3.2.3
or
Bf,4% + B} ui =0 (3.2.4)
where Bfl = -1, B{l = R,11, and d represents the dependent coordinates and 1 represents

the independent coordinates. Since |BY,| # 0, the dependent velocity components of first
body can be calculated as

43 =B T'Bi it = pat (3.2.5)

where P, = —B'lil_1 ‘il = R,11. The velocity vector of first body u; can be written in

terms of independent velocities 1] as

, uf P\ .. i
) = {u‘1 } = ( ;) 1] = @14} (3.2.6)

where Q; = (};1 ) Likewise, B33 of the second row of (3.2.1) can be partitioned into

Bayi; + B3,u8 + Bi,ub =0 (3.2.7)
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or
. -1 . S
4§ = —B%,” (Bt + Biyub) (3.2.8)

for |BS,| # 0. Substituting (3.2.6) into (3.2.8) yields
: -1 X § et - i

where R; = —Bgz-lBngl = B21Q:, and R, = —B;‘{‘B;’, = B.:;z. The velpcity vector
of second body, %2, can be expressed in terms of the independent velocities, 2} and i}, as

w ) (8 ) one

where S, = (If)l) and S; = (152 ) Applying the same procedure to the third row of

(3.2.1), 4% can be expressed as
45 = —Bgs(Bsztia + Bigi}) = —Bis[Baz (814} + Syu}) + Blgi]
= Vyu} + Vaul + Vadl (3.2.11)

-1 -1 -1,
where V) = —B$;" B33S) = B3S1, Vo= ~Bf;  BsyS2 = B32Sa, Vo= ~Bg;  Bis =
Bj}j, and u3 can be written in terms of 4}, 4%, and 4} as

24 6} ol

. u i v, V. 8 4

= {ﬁ? } = [ o o I ] uy o = [W|Wo[Ws]{ 0} (3.2.12)
3 . g d%

where W, = (‘;‘), Wy = (‘;2), and W3 = (‘;2) Combining (3.2.6), (3.2.10), and

(3.2.12), we construct the physical velocities 1 in terms of 1 as

% Qi 0 O ag :
g p=|8 S; O a4 (3.2.13)
i3 W, W, Wi |4
or .
1= Au' (3.2.14)

where A is the null space of the constraint Jacobian matrix that has been exploited in the
previous section. Note that in the process of forming A, the inversion of the dependent
matrices can be obtained analytically as opposed to the generalized coordinate partitioning
scheme that the inversion of the dependent matrices have to be carried out numerically.
The scheme for constructing A provides a guideline to deal with MBD systems containing
different topologies such as multiple open kinematic links and closed kinematic loops, which
will be discussed in the following sections.



3.3 Natural Partitioning Scheme For Multiple Open Chain Systems

If the MBD systems have more than one branch as shown in Fig. 2, the present
scheme lends itself to multiprocessor computers. This property can be demonstrated by
the following MBD system where the constraint equations are given by

i [Bll] 0 0 0 0 121
[B21] [Baa] 0 0 0 Uy
0 [B32] [333] 0 0 fl3 (3.3.1)
[Ba] 0 0 [Ba] O g
0 0 0 [Bsa] [Bss| Us
Applying the proposed scheme, the A matrix is selected as
i [Q1 0 0 o0 0 7 (u
g S, S 0 0 o0 u}
iz p=|W, Wy W 0 0 i} (3.3.2)
Ugq Y 0 0 Y, O uy
Us 121 0 0 Z4 Zg | \ug

Note that, in the natural partitioning scheme, once the first row of (3.3.2) is constructed,
the second and fourth row of (3.3.2) can be constructed simultaneously according to given
Q1. Again, if the first, second, and fourth rows of (3.3.2) are found, the third and fifth
rows of (3.3.2) can be obtained according to their dependent branches respectly. Since
MBD systems are the systems that include many kinematic loops, it is natural to utilize
this development in a multiprocessor computer to compute the null space (at each branch)
of the constraint Jacobian matrix.

3.4 Natural Partitioning Scheme For Closed-Loop MBD Systems

When the systems have one or more closed loops, difficulty arises in constructing the
null space of the constraint Jacobian matrix as one will see from examining the following
three body crank-slider problem (Fig. 3). The constraint equations for this problem are
given by

[Bll] 0 0 o

[Bz21] [Bz2] 0 a
0 [332] [Baa] 1-‘2 0 (3-4.1)
0 0 [Ba 3

It is obvious that joint 1 and 4 conflict in determining the null space of (3.4.1) according
to preceding scheme. Fortunely, there is a technique to overcome this difficulty. The
technique is called “cut joints” which means cut the joints that are necessary to force the
system topologies to become open loops so that the existing solution procedure could be
adopted. This technique is accomplished by partitioning (3.4.1) into the following form

7



[ [B11] 0 0 i
[B21]  [B22] 0 3] B
0 [B32] [333] Uy p = { Bo } u=>90 (3.4.2)
0 0 [B43] ]
or
B,i=0, B.i=0 (3.4.3)

where B, represents the open loop constraint Jacobian matrix, and B, represents the
remaining constraint Jacobian matrix after the joints have been cut. Performing the
natural partitioning scheme to construct the null space of B, as

B,A,=0; ATBT =0 (3.4.4)

Performing algebraical calculations as in section 3.1 yields the equations of motion for a
closed-loop MBD system as

Mi +BTa, + BT, =F (3.4.5)
Premultiplying Af to above equation. yields
ATMia + ATBTA, = ATF (3.4.6)

which can be solved either by employing the penalty constraint stabilization technique
(P.C.8.T.) or by constructing the null space for the new equations of motion.

4. A Solution Procedure for MBD Systems

A common procedure for solving DAE is to augment (2.1) and (2.4) into the following
system of differential equations

ERAREEN
B o0 A —Bu ’
so that numerical ordinary differential equation solvers can be applied. The drawbacks
of this approach are : first, (2.4) does not represent the original constraint equations
(2.2) ; second, the violation of the constraints occurred during the process of numerical
integration. A constraint stabilization technique proposed by Baumgarte can be used to
stabilize (4.1). The disadvantages of this technique have been studied and a new stabilized
technique has been developed in [12,13] so that constraint violation can be stabilized
efficiently. An alternative approach to avoid constraint violation is to obtain the null
space of the constraint Jacobian matrix as suggested in the present scheme. De Jalon et
al. have developed a formulation using the so called natural coordinates so that similar
equations of motion to (3.1.8) are obtained. The drawbacks of their approach has been

discussed in [10,11}. A solution that avoids these drawbacks can be achieved by augmenting
(3.1.7) and (2.3) into



AT™™] . [ATF
e e {50 42
which not only destroys the symmetry of the matrix in (4.2) but also violates the constraint

conditions when time integration algorithms are used. The following section discusses an
approach that overcomes these difficulties with parallel computation in mind.

4.1 Application of Parallel Computations

Since MBD systems may involve hundreds of bodies, solution for such systems require
large amounts of computations. For the purpose of real-time simulation, existing parallel
computers need to be utilized and new numerical algorithms need to be developed in
order to speedup the solution process. So, instead of solving the second order differential
equations (3.1.8), we augment (3.1.3) and (3.1.7) into the following form :

e - ) (3

Following [24,25], we can partition M, i, and MA into the the following form

[ M(l,l) 0 0 0 ses D(l,n+1)- ( ﬁl ) ( cy )
0 M(g'g) 0 0 ven D(2,n+1) &2 Ca
0 0 M(3’3) 0 cen D(3,n+l) ii3 _ c3
0 0 0 A KT ok B S
. Mn n) tp Cn
[ D(n+1,1) D(n+1,2) Dn1,3) - o J\la*, [ d )

where n is the total number of bodies in the system. The above system with an arrow
head matrix (4.4) can be written as

- M;i; + D(J',n_._l)ﬁ‘ =¢, J=1,.,n

n
Y Dns1, iy =d
i=1

(4.5)

where
n n
T
2 Dirij =) ATM;
Dyn+1) =MjA;, 7=1,..,n

¢; = —(MA&")]-, 7=1,..,n
d=) ATF;
i=1
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Each diagonal submatrix M; represents the local mass matrix which is decoupled and can
be factorized concurrently. An off-diagonal submatrix D; denotes the coupling between
two connecting bodies in the system. Since M is a constant matrix, (4.5a) becomes

ﬁ] = M;l(D(j.n+l)ﬁi —_ CJ') (4.6)

Substituting (4.6) into (4.6b) gives the well-known Schur complement

n n n
> D(ns1)M; Diinsn))i’ = Dins1 yM; ' Fj = ) Diny1 ) At (4.7)
j=1 i=1 i=1

where (3.1.8) is recovered. Several aspects of the present procedure have been observed :

(1) The parallelism in the multibody system is exploited by mapping each processor onto
a group of bodies so that independent computations such as the left hand side of (4.7)
can be performed concurrently.

(2) Since M; is a constant mass matrix, it needs to be factored only once.

(3) To solve for @', a parallel sparse solver such as described in [25] may be utilized.

(4) Once @' is obtained, the evaluation of G from (4.6) is trivially parallelized.

4.2 Parallel Solution Procedure for MBD Systems
The solution procedure using the natural partitioning scheme can be summarized with
the following steps :

[1] Construct A at step n. _

[2] Solve (4.3) at step n for @, and @°. .

[3] Integrate translational and angular velocities from n to n + 1 by using i, and @°.

[4] Integrate translational displacements and angular orientations from n to n + 1 by
using 1, and u°.

It is known that current MBD programs, which are developed in the last twenty years,
were tailored for sequential computers with core memory limitations. Limited core memory
is an issue motivating researchers to develop sparse matrix method that will dramatically
decrease computer storage. In selecting a solution scheme from a multiprocessing system,
iterative solution methods are often preferred over direct methods because they require
fewer synchronization and / or interprocessor communication. Most studies of MBD algo-
rithms often assume that the system equations have already been formed. As indicated in
(4.5), the system equations can be generated independently and in parallel. It would be
natural if the solution scheme can be processed at body-by-body level without forming the
system equations. Among the iterative solution methods, the conjugate gradient method
appears to be the most promising candidate because of its inherent parallelism [24-26].
The following parallel PPCG scheme, which is specified to MBD systems, is summarized
into two steps with (4.1.9) as the system equations :

(1) Solve in parallel using all the processors M*i' = b

10



e Form the right hand side of the Schur complement :
For j =1 to N, do concurrently
Form T:(5) = M(5) ™" e(4)
Form b(3) = d(j) — D(j)T(5)

e Initialize :

20 =0

ro==%
Fork=1,...,n

If rx_; = 0 then quit

Else

¢ Compute new conjugate search direction :
Solve Pzy_1 = ri—; for zx_;
Bk = 2f_irk—1/2_,rk—2 (B1=0)
Pk = 2zk—1+ Brpr-1 (P1 = 20)

e Form the left hand side of the Schur complement :
For j =1 to N, do concurrently
Form Ti(5) = D7 (5)pk(s)
Form Ti(5) = M(5) ™' Tu(5)
Form M(7)*px(s) = —D(5)Ti(;)

e Line search to update solution and residual :
ar = z1_ rk—1/pTM"py
Tk = Tk—1 t CkPk
rk = rk-1 — axM’p;

Endif

(2) Broadcast the part of z corresponding to the handled rows of D to neighboring pro-
cessors and solve for 1 as in the following steps :

For j = 1 to N, do concurrently
¢ Receive z
¢ Back substitute for i
e Send 1 to host for output

As noted in (4.7), the conjugate gradient method is used to obtain system independent
variables without forming the null space matrix of the constraint Jacobian matrix. The
reason is that the major operation of the conjugate gradient involves the multiplication of
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a matrix by a trial vector. Thus, we can rewrite (4.7) as
v=BM™'BTp

=) B(ns1,/)M; ' B(j,n41)P
i=1

n
=Y Bni1, )M 'p"

i=1
n

=Y B(as15)?"
=1

where v¢ = [v(l),v(z), ...,v(")]. This multiplication is performed in three steps, and they
add different contributions from prospective bodies to the entry of the resulting vector.
The matrix-vector multiplications are performed directly on the body level and resulted
in the global vector v.

Preconditioning can be used to accelerate the convergence of the conjugate gradient
method. This is achieved by solving the modified system

PM*z = Pb (4.9)

where P is the preconditioning matrix. Selection of an optimal preconditioner for present
MBD problems will be addressed in future work.

A prototype code for dynamics analysis of MBD systems on a shared-memory mul-
tiprocessor is currently under development at Center for Space Structures and Controls
(CSSC). The software architecture and the numerical algorithm presented in this paper
are part of the code. A test version called PMBS (Parallel Multi-Body System) has been
implemented on the Alliant FX/8 by using Force macros [29]. Several example problems
have been experimented and the results will be shown in the following section.

5. Numerical Examples

Computer simulation of two MBD systems has been examined in this section by
using the scheme and the algorithm developed in previous sections. The resulting robust
algorithm solves the present equations of motion of any arbitrary system topologies.

5.1 Three Dimensional Three-Link Manipulator

In order to validate the feasibility, effectiveness, and accuracy of the present scheme, a
three-link manipulator, which has been studied by Gawronski and Ih [27,28], was performed
under the given specifications. The manipulator is under a specified nonholonomic tip
velocity constraints throughout the whole simulation as shown in Fig. 4. The joints that
connected the link are modeled as spherical and revolute joints. Initially, the Lagrange
multipliers are introduced to enforce the joint constraints as well as the nonholonomic
constraints at the tip of the manipulator. The Lagrange multipliers are then eliminated by
adopting the present scheme so that the numerical algorithms can be performed. When

12



time stepping, the manipulator is maneuvering under the desired trajectories which are
given in two different vertical planes as illustrated in Fig. 5 and 6. The corresponding joint
velocities and accelerations, which are matched quite closely to the results that are given
by Gawronski and Ih, are shown in Fig. 7 and 8. Numerical experiments, although not
reported herein, show the present scheme and algorithm provide considerably less CPU
time than the one with the penalty constraint stabilization technique due to the number
of the operation counts. These will play an important role in the real-time simulation.

5.2 Double-Wishbone Auto-Suspension Systems

To explore the parallelism of the present scheme, we select a vehicle model with
multiple suspension systems, in which the input data describing this system are provided
by Nikravesh of the University of Arizona, as shown in Fig. 9. According to the scheme
used in section 3, the vehicle can be easily partitioned into four subsystems where four
independent processors can be assigned to each of the subsystem so that the null space of
the constraint Jacobian matrix can be constructed in parallel. Note that the suspension
systems possess four sets of springs and dampers with given locations, spring and damping
coefficients. The tires of the vehicle are modeled by using unilateral spring elements.
Initially, the vehicle is positioned in a height of one meter from the ground with initial
velocities equal to zero. When the vehicle is been released, gravity acts as the external
loads that force the vehicle to fall. Fig. 10 illustrates one of the spring that reacts to
the given external load during one second simulation run time. The displacements of each
body, which simulate the behavior of the bodies in this system, are given in Fig. 11-15.
The interesting features of this simulation are the CPU time consumption (Fig. 16) and
the speed-up (Fig. 17) of using different processors in Alliant FX/8. Note that present
scheme (N.P.S.) has been used to compare the results that have produced by previous
developed penalty constraint stabilization technique.

6. Conclusion

An efficient numerical method for the dynamic analysis of MBD systems has been pre-
sented. A scheme that requires less CPU time to generate the null space for the constraint
Jacobian matrix has been developed. The present scheme, which is robust for kinematic
chains with variable degrees of freedom, provides the system independent coordinates that
can be integrated without violating the kinematic constraint conditions. A parallel pre-
conditioned conjugate gradient is also developed to solve the system governing equations
of motion which are written in the Schur complement form so that parallel computations
can be applied. Finally, the application of two example problems, dealing with holonomic
and nonholonomic constraints, show the generality of the scheme and its capability for a
general purpose computer program for the dynamic analysis of MBD systems.
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Fig. 1 The Triple Pendulum Problem

S

Fig. 2 Example of MBD Systems with Multiple Branches
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(a)

(b)

Fig. 9 Revolute and Spherical joints connecting different bodies of the system.

Top and rear views : (a) front and (b) rear suspension systems
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Stabilization of Computational Procedures for
Constrained Dynamical Systems

K. C. Park* and J. C. Chiout
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. 0"( A new stabilization method of treating constraints in multibody dynamical systems is presented. By tailoring a

- penalty form of the constraint equations, the method achieves stabilization without artificial damping and yields a
companion matrix differential equation for the constraint forces; hence, the constraint forces are obtained by
integrating the companion differential equation for the constraint forces in time. A principal feature of the method
is that the errors committed in each constraint condition decay with its corresponding characteristic time scale
associated with its constraint force. Numerical experiments indicate that the method yields a marked improvement
over existing techniques.

1. Introduction correction strategies by Baumgarte,'**® penalty formulation
by Orlandea ct al.'” and Ldtstedt,' the coordinate partition-
ing technique by Wehage and Haug,'® and the differ-
cntial/algebraic approach by Gear? and Petzold.”! In ad-
dition, recent reports by Huston and Kamman,? Fuehrer and
Wallrapp,?* Schwertassek and Roberson,?® and Nikravesh®®
address various related techniques.

Among the procedures cited, it is generally agreed that
Baumgarte’s technique is the most reliable one for handling
constraints. Thus, we believe that new methods for constraint
stabilization should be compared with Baumgarte’s technique.
However, an examination of Baumgarte’s technique has re-
vealed that it has three important algorithmic and software
difficulties.

First, according to Baumgarte’s formulation that leads to
his constraint stabilization, the error committed in all the
constraint conditions during time integration steps can decay
only with a uniform characteristic time constant. In other
words, each of the constraint equations converges at the same
rate regardless of its physical nature. This uniform conver-
genee rate masks an important physical phenomenon: the

HE dynamics of flexible multibody systems, such as the
design of robotic manipulators, mechanical chains, and
satellites, is becoming increasingly important in engincering.
Computer simulation of such multibody dynamical (MBD)
systems requires a concerted integration of several computa-
tional aspects. These include selection of a data structure for
describing the system topology, computerized generation of
the governing equations of motion, incorporation of con-
straint conditions, implementation of suitable solution al-
gorithms, and easy interpretation of the simulation results.
Traditionally, the task of formulating the equations of
motion has been of dominant concern to many dynamists. As
a result, several MBD formulations have been proposed; thesc
differ primarily in the manner in which they incorporatc
constraints and in their resulting system topologies.!!* Hence,
reliability and cost of existing MBD simulation packages have
becn strongly affccted by how well the equations of motion
have been strcamlined and how well the constraints are pre-
served during the numerical solution stage.
As dynamists face more complex problems, particularly in

the field of large space structures, a new consensus is emerg- characteristic time constants of each constraint equation are
ing: MBD simulation requires a data structure that can different, since Lagrangian multipliers associated with the
accommodate various system topologies. A primary motiva- constraint equations exhibit different physical response char-
tion for espousing a maximum flexibility in the data structure acteristics. Hence, Baumgarte’s technique does not exploit the
is to allow, for each subsystem of a complex MBD system, the well-known observation that the principal errors in multi-

degree-of-freedom systems behave the same way as do those

adoption of different modeling assumptions, different formu- A ¢
associated with the individual physical components.

lations of the equations of motion, and different solution

techniques. Once this need is recognized, compatibility of Second, Baumgarte’s technique requires that the solution
subsystems as well as of various constraints becomes a focal matrix, B'M !B, can be invertible, where B is the gradient of
computational issuc. However, enforcing such subsystem and the constraint equations and M is the mass matrix. It is noted
kinematical compatibihtics leads to a formulation that in- that the solution matrix becomes singular (or ill-conditioned)
volves a set of auxihary constraints that must be satisfied at if two or more constraints become numerically dependent (or
each integration siep almost dependent) upon one another. When that happens, the
Because it is imiportant in the simulation of MBD systems potential gain in accuracy realized by Baumgarte's stabiliza-
1o treat the resulting constrannts accurately and reliably, several tion is lost.
computational proccdures have heen proposed. These include Third, Baumgarte’s technique requires the solution of an
the technique for condensing dependent variables via singular- augmented matrix equation that involves the constraint gradi-
value decomposiion by Walton and Steeves.'* equilibrium ent matrix B. This mecans that whenever additional con-

straints are introduced or when some of the constraints are
relaxed, the matrix profiles of the total-system equations will
have to be varied. The task of dynamically varying matrix
profiles of the total-system equations can significantly com-

Received July 6, 19R7: revision received Sept. 16, 1987, i - X .
ariman reeaved Sep &7. Copyright plicate softwarc implementation.
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response time constants; the principal errors in the constraint

equations diminish according to their corresponding physical

response characteristics. Second, the new technique overcomes
the nonconvergence difficulty when two or more constraints
become numerically dependent. Third, the new technique yiclds
a matrix differential equation for the constraint forces. Hence,
the solution of the constraint forces can be carried out in a
separate module {rom that for the primary solution variables
(the position vector for the dynamical equations). To this end,
the paper is organized as follows.

Section II presents a review of the Lagrangian A-method?®
for formulating the equations of motion with constraints,
including both configuration (holonomic) constraints and
motion (nonholonomic) constraints. An examination of
Baumgarte's stabilization for constraints is offered in Sec. III,
delineating in detail the three noted algorithmic and software
implementation difficulties of the Baumgarte stabilization
technique.

Section IV presents a new stabilization technique based on
a control synthesis approach. First, we introduce the well-
known penalty technique so that the constraint forces are
made proportional to violations of the constraint conditions.
Second, by tailoring the governing equations of motion and by
augmenting the constraint equations with the tailored form of
the equations of motion, a stabilized differential form of
constraint equation is derived. The resulting stabilized con-
straint equations are shown to be matrix differcntial equations
with the constraint forces as the primary solution vector, yet
possessing no artificial damping as is the case with Baumgarte’s
technique. Hence, one is left with a set of coupled differential
equations of motion in which the generalized displacements
and the constraint forces form a conjugate pair of unknowns.
It should be mentioned that a similar approach has been
successfully utilized for the solution of fluid-structure interac-
tion equations®’ and of fluid-porous soil interaction equa-
tions?® when the interaction equations are partitioned*** and
solved in a staggered manner. For this reason, the present
method will be called a sraggered stabilization technique.

Section V reports numerical experiments that illustrate the
improved performance of the present staggered stabilization
technique.’! The paper ends with concluding remarks regard-
ing computer implementation issues in production-level MBD
simulation modules.

II. Equations of Motion with Constraints

The Lagrangian equations of motion for mechanical sys-
tems with constraints can be written as

d 4L AL “
ST - = =0+ EA B,,. i=1l...n (1)
dr 33, ~ Jq, oot

2,(9.4.4)=0 (2)

where L is the system Lagrangian, ¢, are the constraint
conditions imposed either on the subsystem boundaries or on
the kinematical relations among the generalized coordinates,
g, are the generalized coordinate components, ¢ is time, ()
denotes time differentiation, A is the Lagrangian mulitiplier,
Q, is the generalized applied force, and B,, is the ith gradient
component of the kth constraint equation, Eq. (2).

In order to focus our subsequent discussions, we specialize
Eq. (2) to the holonomic (configuration) case:

it
®,(q)=0, Bl=—*, k=l.m (3)
4q;
and to nonholonomic (motion) case:

ad
®,(q.4)=0. B/:'.h"ja—‘-l". k=1..m (4)
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It should be noted that the constraint forces Q are obtained
by

Q'=Y \B,, i=1l...n (5
k

-1

and not by A, alone.

Because the two constraints give rise to two different sets of
equations of motion, we will treat their time discretization
separately. It should be mentioned that a typical MBD system
involves both cases; hence, the solution procedure should
account for the two constraints concurrently,

Systems with Nonholonomic Constraints Only

When the system involves only nonholonomic constraints,
the equations of motion become

¥ aln-(9
[ B 0]lA ¢ (6)
where M is the mass matrix, Q consists of the applied force

Q, the centrifugal and Coriolis force, and the internal spring
force, and c is given by

ad
€= ar 7

Systems with Holonomic Constraints Only
When the system involves only holonomic constraints, the
equations of motion become

R P R

1II. Baumgarte'’s Stabilization Technique

In Baumgarte's technique, one replaces the second row of
Eq. (6) for the case of nonholonomic constraints by

d+y0=0 9)

Hence, the right-hand side of the second row of Eg. (6) is
modified as

o

57 -y® (10)

c= —

Baumgarte sketched a solution scheme that uses the given
parabolic stabilization technique as follows. First, the para-
bolically stabilized equation may be expanded as

B('j+%$+y¢-0 (11)

By substituting § from the first row of Eq. (6), one obtains for
A in the form

(BM"B’)A=-BM"§+8—;;+7¢ (12)

Hence, A in the preceding expression can be substituted into
the governing equations of motion to yield

Mi=Q~ B’(BM"BT)"{BM“Q'+ %—? +7°> (13)

which can be integrated by an explicit integration formula.
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For holonomic cases, he has recommended the following
integro-differential form:'¢

¢+2y0+y? [ @dr=0 (1)
fo
so that one obtains
e '
c-——ar-Zyd’—yzj:th (15)

[

In the paper where Baumgarte presented this procedure, no
solution scheme was suggested, except that he advocated the
adoption of generalized momenta as the primary variables. In
the present context of the generalized coordinates g, a plausi-
ble implementation of the stabilized integro-differential con-
straint equations may be realized as follows. First, one in-
tegrates the governing equation of motion, Eq. (8a), by an
implicit integration formula

qn+l_aén+l+h: (16)

where & is a formula-dependent stepsize and A7, is a historical
vector. For example, for the trapezoidal rule, we have

8-(1n¢l _’n)/z'

Integrating the equations of motion with holonomic con-
straints once, by the preceding implicit formula, one obtains

hy=q"+84" (17

"' =8M(Q - BTN!) + kY (18)

We now substitute the preceding equation into the stabilized
integro-differential constraint equation, Eq. (14), to yield

5BM 'BTX'"! = §BM™'Q + AT+ 2y® + yzj’cb dr (19)
o

After substituting the given expression for A, one can in-
tegrate the resulting equation to obtain q"*! by either an
implicit or explicit integration formula. We now offer the
following remarks.

Remark 1

Each of the constraints for both the holonomic and nonho-
lonomic cases, {®,, k=1...m), possesses the same para-
bolic time constant vy, since its solution can be expressed as

@, =Ce ", k=1.m (20)

Note that the errors committed in each of the constraints also
decay with the same single time constant. However, regardless
of their physical time constants, the errors in the constraint
conditions by the stabilized constraint equations, Egs. (9) and
(14), are forced to decrease at the same rate. Hence, the
technique does not take advantage of physically different time
constants in order to minimize the errors being accumulated
in the constraint equations.

Remark 2

Note that the generalized constraint forces A in Eq. (12)
exist only when the matrix BM'B” is not ill-conditioned.
Even though the constraints are theoretically independent,
such ill-conditioning can occur when two or more constraints
become numerically nearly dependent, as B is in general
state-dependent. If such situations develop, the accuracy of
generalized constraint force A can be considerably degraded,
thus leading to a dramatic loss of solution accuracy for g.

Remark 3

From computer implementation considerations, the solution
of MBD systems by Baumgarte's technique must be carried
out in a tightly coupled program module. Thercfore, any
change in the number of constraints impacts the matrix struc-
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ture of the solution procedures, requiring dynamically varying
matrix profiles. This can considerably complicate the task of
software implementation.

We will now present a new stabilization technique that
mitigates the three algorithmic and software implementation
difficulties in Baumgarte’s stabilization technique pointed out
in the preceding remarks.

IV. New Technique: Staggered
Stabilization Procedure
In Baumgarte’s stabilization technique, as discussed in the
preceding section, the objective was to minimize the errors
initiated in the constraint condition

¢=0 (21)

First, the difficulty associated with numerically dependent
constraints alluded to in Remark 2 can be overcome by
adopting the penalty procedure

A-%(b, e—0 (22)

as the basic constraint equations instead of Egs. (3) and (4). It
is noted that the penalty procedure as given by Eq. (22) tacitly
assumes violations of the constraint condition in actual com-
putations. If one substitutes Eq. (22) into the governing equa-
tions of motion, the result becomes

Mi + %BT¢=§ (23)

It can be shown that this penalty procedure mitigates noncon-
vergence difficulties in the constraint conditions. However, its
major drawback is that once an error is committed in comput-
ing A, there is no compensation scheme by which the drifting
of the numerical solution can be corrected. It is this observa-
tion that has led to the development of a staggered stabiliza-
tion procedure as described in the following paragraphs.

To illustrate the new procedure we will consider the case of
nonholonomic constraints. Instead of substituting the penalty
expression directly into the governing equations of motion,
ficst we differentiate Eq. (22) once to obtain

Xa%(Bij+W) (24)

where we assume the penalty parameter ¢ to be constant.
Second, we obtain § from Eq. (6a) in the form

i=M"(Q-B")) (25)
and substitute it into Eq. (24) to yield
i s, 00
eA+BM 'BTA=BM7'Q + — (26)

Notice that the homogeneous part of this stabilized equation
in terms of the gencralized constraint forces A has the follow-
ing companion eigenvalue problem:

(y+BM ™ 'BT/e)y=0 27

where {vy,. k=1...m} are the eigenvalues of the homoge-
neous operator for the new stabilized constraint equations,
Eqs. (26). Since y, also dictates how the errors in the con-
straint equations will diminish with time, the errors committed
in the constraint conditions will decay with their correspond-
ing different response time constants. This physically oniented
stabilization property of the present technique is in contrast to
that of Baumgarte’s technique wherein all the error compo-
nents diminish according to a single time constant.
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Third, the new technique enables us to solve for A from the
stabilized differential equation, Eq. (26). Specifically, we now
have a set of coupled equations, onc for the gencralized
coordinates ¢ and the other for the generalized constraint
forces A, which are recalled here from Egs. (6a) and (26) for
the case of nonholonomic constraints:

M 0 {q\ 0 BT q / 0
Vil T - = 1
0 « \x{ 0 BM7'BT[|A lBM '0+ -
(28)

Npte tha} these coupled equations directly provide the desired
differential equations for a conjugate pair of [¢ A].

Remark 4
F(_)r holonomic constraints, one has several stabilization
possibilities. The one we have chosen is to integrate the
governing equations of motion once to obtain
-':=8M—l(—Q-n_Ble +h"
q p (29)

which is substituted into

a1 2)
to yield

X'+ 8BM ‘BTN = B(8M '6"*”:5)+%? (31)
Remark §

It is observed that even if BM~'B7 is almost singular, the
new stabilization technique as derived in Egs. (26) and (31)
would not cause numerical difficulty in computing A since the
solution iteration matrix becomes (¢ + 8 BM~'B") for nonho-
lonomic cases and (¢ + 82BM~'B”) for holonomic cases.

Remark 6

The present staggered stabilization technique and Baum-
garte’s technique can be presented in control-synthesis block
diagrams, as shown in Figs. 1la and 1b. For nonholonomic
constraints, the present technique can be viewed as a combi-
nation of gain plus rate feedback stabilization, whereas
Baumgarte's technique is seen as a simple gain feedback
stabilization. For holonomic constraints, a similar distinction
can be observed. The resulting feature of a rate feedback
manifested in the present staggered stabilization technique
constitutes an important attribute as it copes with the dynami-
cal nature of the problem.

V. Numerical Evaluation

The first problem is a one-bar rigid pendulum problem
studied in Ref. 15. The equations of motion consist of both
horizontal and vertical trajectories of the pendulum’s tip plus
one constraint equation for the circular motion of the tip:
thus, there are two position variables and one holonomic
constraint condition. First, we fix the integration stepsize and
carry out the numerical solution by the trapezoidal rule without
iteration for both stabilization techniques. Figure 2 shows the
errors in the constraint condition for the two techniques. The
results show that the present technique yiclds accuracy about
two orders of magnitude higher than that yiclded by Baum-
garte's technique. In order to gain further insight, the accuracy
level in the constraint condition is fixed to be the same (10~ )
at each time step and the solution matrix is iterated to satisfy
the accuracy requirement. Figure 3 illustrates the number of
iterations needed at cach step vs time. Note that the average
iteration number for the present technique is about four,
whereas with Baumgarte's technique it is about six.
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a)

b)
Fig. 1 Control synthesis representation of two stabilization tech-
niyues: 3) Baumgarte's technique, and b) stabilized technique.
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The second example is a classical crank mechanism whose
governing cquations of motion are characterized by the fol-
lowing matrices and constraints {see Egs. (3-8) for their
definitions]:

i
M= ) (32)

m
rcos@ — (x — 1, cosg)

O={ rsind—(y-1{sing) »=0 (33)
({-1)sing +y

—rsind  rcosf 0
gT=| ~h sind [, cos¢ (-1 )cose (34)
-1 0
0 -1 1

and
q=[0 $ x ,VIT, )\’l}‘l A, AJJT
0={0 0 0 -mg)" (35)

Figure 4 shows the problem definition along with the numeri-
cal performance of the two procedures, Baumgarte’s technique
and the staggered stabilization technique. The performance of
the Baumgarte technique and that of the staggered stabiliza-
tion technique for this problem are also presented in Fig. 4. In
carrying out the computations, the trapezoidal rule has been
used to time-discretize the equations of motion {Egs. (2)], the
constraints [Egs. (3)], and their stabilized forms [Egs. (19) and
(28)]. A sufficiently small step increment was used, corre-
sponding to 82 increments for one cycle of the mechanism,
with the time increment h = 0.01 for the period 7 =0.82. In
order to measure the performance of the two techniques
directly, in terms of violation of the constraint conditions vs
time during one complete cycle, no iteration was performed at
cach integration step. In each technique, the three constraint
conditions exhibited the same order of accuracy level. Hence,
we illustrate only one constraint violation history, i.e., the pin
joint constraint between the crank and the connecting rod.
Note that the error in the constraint condition for Baumgarte's
technique remains about two digits above that with the
staggered stabilization technique. In addition, we have experi-
mented with several values of a and 8 that are required in
Baumgarte’s iechnique, and the best parameter choice was
found to be a = 8 = 70. For the staggered stabilization tech-
nique, the penalty parameter chosen was ¢=10"°, which
viclded an accuracy level about 107 for the technique.

The third problem tested is a simplified version of the
seven-link manipulator deployment problem.!* The three links
arc initially folded and, for modeling simplicity, between the
two joints is a coil spring that resists a constant deploying
force at the tip of the third link. Also, the left-hand cnd of the
tirst link is fixed through the same coil spring to the wall.
These three coil springs are to be focked up once the links are
deployed straight. The deployment sequence of the manipula-
tor is illustrated in Fig. 5. The time-discretized difference
vquations both for Baumgarte’s technique and the staggered
stabilization technique have been solved at each time incre-
ment by a Newton-type iterative procedure to meet a specified
accuracy level. Hence, the performance of the two techniques
can be assessed by the average number of iterations taken per
time increment. This is presented in Fig. 6 for the accuracy of
10 *. Notice that the staggered stabilization technique re-
quires on the average about 4.5 iterations per step, whereas
Baumgarte’s technique requires about 22 iterations per step.

Constraints on
Pin Joints

10°

Baumgarte’s Technique

10—5 N

New Stabilized Technique

Errors in Constraints

-10
10 0. 0.4 08

Fig. 4 Errors in pin-joint constraint with no iteration, performance of
two techniques.

2.0
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| Time(t=0.3)
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Time(t=0.8)
Time(t=1.0)

0.0 Time(t - 1.1)

Vertical Dimension

-1.0 L L i 1 L 1 ( 1 "

0.0 1.5 3.0
Horizontal Dimension

Fig. § Deployment of three-link remote manipulator.

Note that Baumgarte's technique fails to converge for time,
t = 1.1, as manifested in Fig. 6 because the rows in B become
numerically dependent upon one another when the links are in
a straight configuration. This corroborates the theoretical pre-
diction of nonconvergence whenever the solution matrix
BM 'B” for Baumgarte’s technique [see Eq. (12)] becomes
singular. On the other hand, the staggered stabilization tech-
nique still converges within 30 iterations because it overcomes
this singularity difficulty, since A sull exists, as can be seen
from Eqgs. (26) and (31). Although not reported here, the same
relative performance has been observed for different accuracy
levels, i.c., for the accuracy of 10 % and 10° ¢,

From the sample test problems, we conclude that the
staggered stabilization technique yields both improved accu-
racy over and grecater computational robustness than the
Baumgarte technique. In addition, the staggered stabilization
technique offers software modularity in that the solution of
the constraint force A can be carried out separately from that
of the gencralized displacement gq. The only data each solution
module needs to exchange with the other is a set of vectors,
plus a common module to generate the gradient matrix of the
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Fig. 6 Performance of two stabilization techniques for three-link
manipulator (solution accuracy = 10 %),

constraints, B. However, one should be cautioned not to
extrapolate blindly to complex problems the results of the
present simple examples. Further judicious experiments are
needed in applying the present staggered stabilization tech-
nique to complex production-level problems before it can be
adopted for general applications in multibody dynamic simu-
lations.
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Explicit-Implicit Staggered Procedure for
Multibody Dynamics Analysis

K. C. Park,* J. C. Chiou,t and J. D. Downert?
University of Colorado, Boulder, Colorado 80309

An explicit-implicit staggered time-integration procedure is presented for the solution of multibody dynamical
equations involving large rotations and constraints. The algorithm adopts a (wo-stage modification of the
central difference algorithm for integrating the transiational coordinates and the angular velocity vector, and the
midpoint implicit algorithm 1o solve the kinematical relation in terms of the Euler parameters for updating the
angular orientations. The Lagrange multipliers to enforce the system constraints are obtained by implicitly
integrating a parabolically regularized differential equation for the multipliers. The performance of the present
procedure has been evaluated by applying the procedure to solve several sample problems. The results indicate
that the procedure s robust in dealing with a variety of constraints and spatial kinematic motions, hence it is
recommended for applications to general multibody dynamics analyses,

I. Imntroduction

OMPUTER simulation of multibody dynamical (MBD)

systems has enjoyed substantial progress during the past
several years. As a result, it is now almost routine to perform
realistic modeling and assessment of some practical problems
such as mechanical linkages and manipulations of robotic
arms.” Recently, a new need for the large-scale, reai-time
simulation of flexible MBD systems is emerging primarily in
support of deployment and construction of large space struc-
tures in orbit. The development of an MBD simulation soft-
ware system for space applications must meet several needs,
which include a versatile data structure for implementation of
candidate MBD topologies, an automatic derivation of the
equations of motion, a streamlined incorporation of the sys-
tem constraints, a robust and efficient direct-time integration
package, a modular interface with active-control systems, and
timely visualization of the simulation results. Of these, the
present paper focuses on a robust and efficient time-integra-
tion package with parallel/concurrent computers as its pri-
mary computational environment.

In general, there have been two types of direct-time integra-
tion algorithms for the transient response analysis of dynami-
cal systems: explicit and implicit algorithms. Currently, im-
plicit algorithms appear to be favored by many MBD
specialists when both the generalized coordinates and the La-
grange multipliers are treated as the unknowns. In this case,
the corresponding formulations incorporate the system con-
straints by the penalty augmentation through the Lagrange
multipliers. It is well known that the resulting Newton-like
solution matrix is stiff. This has led to implicit time discretiza-
tion of the constraint-augmented equations and simultaneous
solution of both the generalized coordinates and the Lagrange
multipliers.t.13:1%.32.25

On the other hand, if the constraints are eliminated so as to
reduce the number of unknowns, it is possible for one to
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employ either implicit or explicit algorithms. For this situa-
tion, if the system topology is an open tree, one may invoke
either a geometric or an algebraic procedure to streamline the
resulting equations of motion. Geometric procedures rely on
the use of the incidence matrix? and the body-array matrix."
Some of the proposed algebraic procedures include singular
decomposition,?* the use of generalized speed,'? the coordi-
nate partitioning technique,? and the so-called order-N proce-
dure.™

In developing the present MBD solution procedure, we have
been guided by the following considerations, which have led to
the selection of an explicit algorithm. First, the algorithm
must be robust; experience suggests that explicit algorithms
remain robust provided computations are stable. Second, the
algorithm should be easily interfaced with a constraint proces-
sor as well as an active control synthesizer; the task of inter-
facing a software module with other software modules be-
comes easier if its data structure is simple, thus favoring an
explicit algorithm. To this end, as the central difference inte-
gration algorithm has been most widely used for the explicit
transient analysis of structural dynamics problems, we have
decided to adopt the central difference algorithm as our basic
integration algorithm. The rest of the paper is organized as
follows.

In Sec. 11, we introduce basic equations of motion for MBD
systems. For computational efficiency, the translational coor-
dinates are expressed in the fixed-inertial frame, whereas the
rotational coordinates are expressed in the moving body-fixed
frame in terms of the Euler parameters. Section 111 introduces
the partitioning of the governing equations of motion into two
groups: translational and rotational. Such partitioning paves
the way for the efficient treatment of the rotational motions
via the singularity-free Euler parameters, which treatment is a
major feature of the present paper.

Section IV introduces the standard form of the central
difference method for updating both the translational and the
angular velocities. Once the angular velocities are obtained,
the angular orientations are updated via the midpoint implicit
formula employing the Euler parameters; update of the trans-
lational coordinates is achieved by the central difference
method. It is shown that the standard form of the central-dif-
ference method is not applicable to the MBD equations, due to
the unavailability of the generalized velocity vector at the time
step at which the acceleration vector is evaluated. To over-
come this difficulty, a staggered form of the central-difference
method is developed.

VOL. 13, NO. 3
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To complete the description of the solution procedure for
constrained MBD systems in Sec. V, the staggered-stabilized
technique for the solution of the constraint forces as indepen-
dent variables is summarized from Park and Chiou.'®!” When
the two algorithms—namely, the two-stage explicit algorithm
for the generalized coordinates and the implicit, staggered
procedure for the constraint Lagrange multipliers—are
brought together in a staggered manner, they form an explicit-
implicit staggered procedure.

Numerical evaluations of the present algorithm are reported
in Sec. VI. Finally, Sec. VIII discusses several computational
aspects of the present procedure and summarizes the main
contributions of the present paper.

II. Equations of Motion for Multibody Systems

The discrete equations of motion for flexible multibody
systems can be expressed as*

Mii + D) + Su) + BiAw + Bihy = f(1) (1)

Syu,u,t) =0, byu,t)=0 )
where M is the mass matrix, D( - ) the generalized velocity-de-
pendent force operator, S(-) the internal force operator due
to member flexibility, By and By, the gradients of the nonholo-
nomic and holonomic constraints [Eq. (2)], Ay and Ay are the
corresponding constraint forces, f(¢) is the applied force, u is
the generalized displacement vector, (') denotes time differen-
tiation, and ()7 designates the matrix transposition.

The numerical solution of the constrained dynamical system
governed by Eqs. (1) and (2) consists of two tasks: the satisfac-
tion of the constraint conditions [Eq. (2)] to obtain A and the
computation of the generalized coordinates u from Eq. (1). A
staggered, stabilized computational procedure to obtain Ay
and Ay by satisfying Eq. (2) was presented in Park and
Chiou'®'" and is summarized in Sec. IV. The major thrust of
the present paper is therefore devoted to the computation of
the generalized coordinates u.

I11. Partitioning of the Multibody Dynamical
Equations
A basic difficulty in direct integration of Eq. (1) is that w is
not directly integrable, except for some special kinematic con-
figurations, to yield angular orientations. This motivates us to
partition & into the translational velocity vector d, which is
directly integrable, and the angular velocity vector w, which is
not, and to treat them by a partitioned solution proce-

dure,318-20 yiz
[ e
“{w)’ “= w Q)

The equations of motion [Eq. (1)] can be rearranged according
to the preceding partitioning:

M, 0] (d y P
o B e
where

{Qaz _ {Qu(ii.d.q. k)} ~ {Dd(d) + S,(d,q) - BI\
0.} = louwda N} = LDuw + sudgy -80S O

in which ¢ is the angular orientation parameter vector, and B,
and B8, are the partitions of the combined gradient matrices of
the constraint conditions (2) that are symbolically expressed as

B =8y + By, A=An+ Ay (6)
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To effect the integration of the rotational degrees of freedom,
we partition o further into

o= |ehat.Lef )T )

where oV is a (3 x 1) angular acceleration vector for the jth
body,
o = oW e ®

IV. Staggered Explicit Method for Multibody
Dynamical Equations
One of the most popular explicit time integration formulas
for the solution of the second-order dynamical equations is the
central difference method, which can be implemented as

un* V2 = n- 172 + hit" (93)
ant Vo g+ ha"* 172 (gb)

where the superscript n designates the discrete time station

t = nh and A is the step increment.
It should be noted that the conventional form of the central

difference method
uhtl=2u"—u" + kA" (10a)
u"+'=u"+(h/2)(u"”+u") (10b)

is not applicable to the MBD equations since w cannot in
general be directly integrated to yield suitable angular orienta-
tions, let alone unfavorable accuracy problems associated with
Eq. (10a) as succinctly discussed by Henrici.?

A. Integration of the Translational Coordinates

Assuming that {d"~"/2,d",d",q",\"} are given at the time
steps, ¢ = (n — 1/2)h and nh, one can proceed to obtain from
the partitioned equations of motion [Eq. (4)], the translational
velocity and coordinates as

dn + 172 = dn— 12 4 th— 1 [f; _ Q,,(d",d".q".N’)] (l la)
dm*'=d"+ hd""'"? (11b)

Note that, due to the intrinsic time-stepping nature of Eqgs. (9),
d" that is needed in computing Q7 is not available. This
difficulty can be overcome if Q, has the form

Qs =Dad + S4(d ,q) — Bd(d q) (12)

where D, is a constant diagonal matrix. For this special case,
one can employ the averaging operator

D" =D (1720 V2 + a1 (13)

so that Eq. (11a) is modified to

5

(M, + 1/2hD)d"* "2 = (My — (h/2)Dg)d" = ' ?
+ h(f7 - S,d"g™) — BIN) (14)

If, on the other hand, Dy is not diagonal or B, contains d,
the modification offered in Eq. (14) loses the advantage of the
central-difference method in that one must either factor the
matrix {M, + 1/2hD,] or iterate on B,. This difficulty is more
pronounced for updating the angular velocity vector as dis-
cussed next.

B. Integration of the Angular Orientations

One can update the angular velocity vector by Eq. (92) using
w from Eq. (4b)

WV = Ve M T~ Qg d " A (15)
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A key feature of the present algorithm is the use of the
following kinematic relation (e.g., Wittenburg?®®) to update the
angular orientations:

21w -@
7g=19 ¢ @ q]T (16)
that is subject to
g7-g=1 (17
where
0 — w3 (435
@ = [&4] 0 —W |y W= Wy wr w;J T (18)
- w2 Wy 0

Of several procedures tested, we have found the following
midpoint implicit rule is the most robust and accurate:

qn* 2= g+ (h/2g)* 12
=g"+ (h/DAW"* ). g+ 12 (19a)
Qo1 =297 =g (@ )Tgn = (19b)
where g"* "? is obtained by
g+ = 17A[ + (h/9A (" ))g”,
A=1+ (h/8)w + Wl + o)) (20

Finally, once ¢”*' is computed from Eq. (19), one can
update the angular orientation matrix R:

b = Re,

2q\93 — qoq2)

2(9293 + Goq1)

2g5 +qd) -1
2n

2gd +qd) -1 2q:q: + gogy)
R = {2(q:q:~ qq3) 2(g¢+qi) —1
2€qiq3 + Goq2) 2293 — qoq))

which relates the body-fixed basis vector, b = | b; by by]7,
to the integral-basis vector, e = |e, € ;] 7.

It should be remarked that the update of the angular orien-
tation parameters through the kinematical relation {Eq. (16)]
is in contrast to the conventional algorithm in which one
substitutes o in Eq. (4b) in terms of ¢ and ¢ by

o =T@W+ TGN

- qo 9 —q
T=2|-q —¢q qo q (22)
k! q: —4q qo

and integrates the resulting equations of motion to update ¢.

However, computations of w”*!”2 by Eq. (15) assume that
w" is available for every integration step. Note the D (w) in Eq.
(5) takes for each body the form of

Dy(w)=dJw (23)

where J is the moment of inertia matrix. This term often
dominates the momentum exchange in multibody systems and
presents numerical difficulties if w" in D, is approximated by
w" -2, leading to inaccurate solutions or numerical instabili-
ties.
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A linearized computational stability analysis for the al-
gorithm based on Egs. (15) and (19), although we do not
report it here, has been performed when D (w") is approxi-
mated by D_(w"~'/2). The analysis result, as corroborated in
Sec. VI, shows that such a naive approximation leads to
unacceptable accuracy loss on outright instability. This has
motivated us to implement both Eqs. (11) and (15) in a two-
stage time-stepping procedure as detailed next.

C. Staggered Integration of the Translational and Rotational Coor-
dinates

To alleviate the computational and stability issues encoun-
tered in the single-stage implementation of the central-differ-
ence method for MBD simulations, the basic algorithm pre-
sented in the preceding section needs to be modified as
follows. Specifically, at an arbitrary integration step from
t=nhtot=(n+Dh, it is necessary for accuracy and stabil-
ity that d" and w" are available for Egs. (11) and (15), respec-
tively. Within the algorithmic context of the central difference
method, this can be accomplished if we stagger the integration
as follows.

First, instead of marching from the (n + 1) to the (n +2)
step at the completion of the (n + 1) step, we go back one-half
step and march a full step from the (n + 1/2) to (n + 3/2)
step:

antt=d"+ ha(dn + I/2'dn& I/2,qn + I/Z‘)\n + 1/2) (24a)
dan+ V2o gn+ 172 4 h"!n +1 (24b)
for the update of the translational coordinates and

Wt =W+ ho(w"* llz,qru l/2'dn¢ l/z‘)\n¢ l/2) (253)

g+ = (/B0 + (h/AW"* ] -q"* 2 (25b)

qn+ 3/2=2qn+l _qn+I/2' (qn+]/2)1‘,qn¢ 372 = 1 (250)
for the rotational coordinates.

For the next integration step, we march from the (n + 1)
step to the (n + 2) step, and so on, hence the name ‘“two-stage
staggered explicit procedure.”” The net result is that, even
though we take a full step (A instead of h/2), we only advance
half the step at a time. In other words, we evaluate the acceler-
ation and the angular acceleration vectors twice for each full

step.

V. Implicit Solution of Constraint Forces

The solution of the governing equations of motion is carried
out by the two-stage explicit integration procedure presented
in the preceding section. For systems with constraints, one
must either eliminate the constraints or solve them as part of
the system unknown. Many MBD systems involve constraints
that are either difficult or computationally cumbersome to
eliminate. For this reason, we will adopt the staggered stabi-
lized procedure,'s'” which is reviewed here for convenience.
First, instead of augmenting Eq. (2) to Eq. (9), and simulta-
neously solving the generalized coordinates and the Lagrange
multipliers, we employ a partitioned solution procedure®:'%-!
to solve the generalized coordinates separately from the La-
grange multipliers. To effect a partitioned solution of the
constraints, we introduce the following penalty expression

A = (/RN Ay = (1/)Pyu.t), 0<e<1 (26)

It is noted that the penalty procedure as given by Eg. (26)
tacitly assumes violations of the constraint condition [Eq. (2)]
in actual computations. Now, to solve A separately, it is neces-
sary to cast A in a differential form instead of in the algebraic
form. This is accomplished as follows.

Instead of substituting the penalty expression directly into
the governing equations of motion (Eq. ()], first we differen-
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tiate Eq. (35) once to obtain

. 1 ad
Aw = - (BM'iN + ——”) (27a)

€ ar

. I ad
Ay =~ <BHu!I + _“H> (27b)

€ at

where we assume the penalty parameter ¢ to be constant.

In practice, both the holonomic and the nonholonomic
constraints may be associated with a common set of general-
ized coordinates. For such cases, we time-differentiate the
holonomic constraints and combine those sets of &, into &y in
Eq. (26). In this way Ay and Ay become uncoupled in Eq. (27)

Let use rewrite Eq. (1) in the form

{HN} B [MN 0 ]" g/v - Py —B\T'>‘N} 28)
iy 0 My W~ Pu ~ By

where p is a generalized momenta
p=Dw) +Su) (29)

so that, upon substituting Eq. (28a) into Eq. (27a) for the
nonholonomic case, one obtains

. ad
Ay + BWMy 'BINy = 1y, = BaMS Iy — ) + —aTN (30)
For the holonomic case, we integrate i,, once by the midpoint
implicit formula [see e.g., (Eq. (19a)] to obtain

WtV =i+ (/2 =i
+ R/ 2M R = plyt = BN ) (3N

Substituting Eq. (31) into the Eq. (27b), we obtain
. h
VAR 3 BuM,; ‘BN =1y,

22,

at (32)

h
=BH|:"?\/+EMH—I(/-I’~11*”2)—D;-I’”2)] +

Equations (30) and (32) can be written as
EN+BM-'BT™\=r, 33

Integration of the preceding equation by the midpoint implicit
rule yields the following differcnce equation:

(ef + (h/74) BM = 'BTN* V4 = (h/4)(r] * V2 + 1) + €N
(34a)

AL ) A I An (34b)

It has been shown that the preceding staggered, stabilized
procedure for the solution of the constraints offers not only a
modular software package to treat the constraints but also
yields more robust solutions compared to the techniques pro-
posed by Baumgarte.?? In particular, even when BM ~'B/
becomes nearly singular, the staggered stabilized procedure
{Eq. (34)] gives stable and acceptable solutions, whereas the
constraint forces computed by the Baumgarte's technique di-
verge.

The present explicit-implicit, staggered procedure given by
Eqgs. (11), (15), and (19) together with the constraint solver
[Eq. (9)] constitutes a complete solution procedure for a multi-
body dynamics analysis for systems with constraints that un-
dergo large motions,

V1. Computer Implementation and
Performance Evaluations

The preceding procedure for the numerical integration of
the equations of motion for constrained MBD systems has
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been implemented in two separate integration modules: gener-
alized coordinate integrator (CINT) and Lagrange multiplier
solver (LINT). The CINT employs a two-stage modified form
of the central-difference method for updating the angular
velocity vector and the midpoint-implicit rule for updating the
angular orientations via the Euler parameters. The Lagrange
multiplier solver adopts a staggered form of the midpoint
implicit method. It should be noted that CINT needs the
constraint force vector, viz, fy = BT\, as an applied force
from LINT. Similarly, LINT needs the generalized coordi-
nates and their time derivatives from CINT. Hence, the step
advancing of the present procedure is accomplished in a stag-
gered manner.

The module LINT receives f7 = B7A" from LINT and ad-
vances the solution of the MBD equation {(1) or (4)] from time
¢ 10 ¢"* 1. Once (d, d, w, ) are available at time """ from
CINT, LINT computes the Lagrange multipliers from Egq.
(34).

To complete the solution of both the generalized coordi-
nates and the Lagrange multipliers, we invoke the following
sequence calls:

t=1t"

Call CINT (p", g", h, p"*")

Call LINT (#7172, b, N1+ /2, fr+112)

t=1"+h/2(n—n+1/2)

Call CINT (pn¢ I/2, gn+ l/2' h. pn¢ 3/2)

Call LINT (* ', b, M+, o+
=("+h

where
pn = (dn— 1/2, dn, " l/Z’ qn)
g"=[w", f{=B"\)
[ 172 _ (dn+ 1/2, dar+ I/Z‘ ot I/Z‘ qn¢ 1/2' )\n)

In summary, the present procedure requires two function
evaluations and two A-solutions per each full step, hence the
name ‘“‘explicit-implicit staggered procedure.’”” We now pre-
sent three sample problems whose efficient and accurate solu-
tions will confirm in their combined totality not only the
viability of the present integration procedure for the solution
of the multibody equations of motion with or without con-
straints, but also the constraint stabilization procedure.

A. Dynamics of a Bowling Ball

This problem was investigated by Huston et al.,'” however,
their equations do not involve the constraint force A. In the
present analysis, we employ a formulation that incorporates
the constraint force as part of the system variables. Figure 1
illustrates the ball, with its radius @ and an offset center 7, that
is to follow a sine curve,

¢=y-—-sinx =0 (35)

by

Fig. 1 Solid spherical ball rolling on a flat surface.
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Table 1 Physical dimensions and initial conditions for
a rolling sphere

m=71.32 N, a=10.9cm, ra=0or 0.15 cm
Ji=J1=J3=2/5 ma?, e=10-6
x0=y0=0, {wg=—w?= , wg=01
P=p=adl, fal=1. ¢’=qf=gP=0]
N /
. oS
’X/‘ %
/ N\
N i
\
\

Fig. 2 Ball track projected on three-dimensional sphere surface.

The various matrices and vector quantities for Eqgs. (26)
and (35) can be derived as

ﬂm 0 — mree, - by mree, - by 01
0 m —mroey by mroes by 0
M= J 0 0 (36a)
sym. Js 0
5y
L 1
1 0 —ab,-e; —ab;-e; —ab;-ez
B = 0 1 ab, - e ab, - e, ab,y - e,
cosx —1 0 0 0
(36b)
wiwe - by + wawsey - by — (o} + wile - b:}
- — 37
Fd mro {w.u,ez - by + wawrey - bz - (w? + w%)ez . b3 37
wwy(J2 — 1)
F,= — {waw(/i—4)
wwily — J2)
e b,
fa=0, fo=mgro —es- b (38)
0
d= I_x,y_j T, w= Lw| Wy (.d;_] T. A= L)\| )\z )\3_1

(39

where the inertial-basis vector e and the corotational-basis
vector b are related according to

b = Re (40)
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There is a total of eight variables to describe the equations
of motion for the constrainted ball. However, in adopting the
present solution procedure—viz, Egs. (1-3)—we solve for nine
variables as we employ the four Euler parameters for angular
orientations.

Numerical solutions of the rolling of a sphere on a flat
sinusoidal curve have been obtained with the data summarized
in Table 1.

The ball track that follows the constraint sinusoidal curve
[Eq. (26)] is projected on the ball itself as shown in Fig. 2, with
the corresponding angular velocities in Fig. 3. The time histo-
ries of the three constraint forces are shown in Fig. 4, where N
and A, correspond to the x and y components of the constraint
forces in order to maintain the rolling-contact condition, and
A; corresponds to the constraint force to maintain the sinu-
soidal trajectory as imposed by Eq. (26). Hence, the first two
constraints are indicative of the skidding phenomenon,
whereas the third corresponds to the steering force required to
maneuver the ball. Notice that, although periodic, they exhibit
highly nonlinear behavior.

We have performed convergence studies with increasing
step sizes; these indicate that the present two-stage staggered
explicit procedure—viz, Eqs. (1-3)—maintains both the solu-
tion accuracy and stability for the step size up to h < 0.15.

Figure 5 shows the angular velocities for a ball with an
offset center (ry = 0/15a). Note that the angular velocities no
longer exhibit periodic response, whereas for the no-offset
case they are periodic (see Fig. 3). Likewise, the steering force
causing the ball to follow the sinusoidal curve (y = sinx) be-
comes highly nonlinear (see Fig. 6) although it is nonlinearly
periodic. The x- and y-direction contact forces, which main-
tain the rolling-contact condition between the ball and the

2.0
a
~ ara
L ’/ \\/\ \/
— ol = N
3 o / Y / k
" / \ \
= - w
P SR
= ! i \
S 1 |
i T
s /
b
" A"J.
_2.0 ( i 1 L 1 i 1
0.0 20.0 40.0
Time(step size = 0.01)
Fig. 3 Angular velocilies of the sphere with no offset.
0.3
. y-direction
Steering Force(As) Constraint
= i ’\ / Force()\,)
g Id
I | \
o
[
E 0.0 < \\4/'\//\1\
i TN
] -
c
]
O L
x-direction
r Constraint
Force(A,)
_03 » i + 1 1 L 1
0.0 20.0 40.0

Time(step size = 0.01)
Fig. 4 Time histories of three constraint forces on the rolling sphere.



MAY-JUNE 1990

3.0
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A
i \/\ / v v /\ J\
3 SV \J
£
s 00 /\/’
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3
<
o (0
_30 A A i 5 1 i 1 N A
0.0 20.0 40.0
Time(step size = 0.01)
Fig. 5 Angular velocities of the sphere with offset center.
1.0
r z-direction y-direction
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=
” .
8 y N\
-TE; 0.0 / J\‘;)\(/ >( \ /}‘
2 Vo
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° \ |
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0.0 20.0 40.0

Time(step size = 0.01)
Fig. 6 Time histories of three constraint forces with offset center.
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------ Solution of present procedure with h=0.2 ’
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Fig. 7 Convergence studies on present and conventional procedure.

surface, although bounded, manifest extremely nonlinear be-
havior.

To corroborate the instability of a naive approximation of
w" X w"~ "2 for the computation of D_ in computing &"—as
alluded to in Sec. |V.B, the equations of motion for the rolling
ball have been integrated by the following formula:

Wt 172 o W™ 172 th— I[f: + B(w”‘ I/Z, d"))\" — F(w"' I«’Z)I
41)
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Figure 7 shows w, vs time for the converged solution, the
present two-stage, explicit-implicit, staggered procedure with
step size (A = 0.2), and the conventional procedure with step
size (h = 0.2). The diverging solution by the conventional
procedure is clearly manifested, thus confirming the instability
of the conventional procedure. On the other hand, the present
staggered procedure faithfully traces the converged solution.

Finally, the solution accuracy vs the step size has been
assessed for the offset center ball with different step sizes.
Figure 8 represents the performance of the present procedure
for different step sizes. Note that if one chooses the step size
that corresponds to more than 15 samples per period, viz.,
h < 0.2, a reasonable engineering accuracy can be maintained.
Although not reported herein, the problem was also solved by
the trapezoidal rule. For # = 0.1, the computational overhead
with the trapezoidal rule was an order of magnitude higher
than by the present two-stage staggered explicit-implicit proce-
dure without an accuracy improvement. Our experience with
the example problem indicates that the present computational
procedure for handling large rotational and translational mo-
tions with constraints is robust and efficient. It is important to
note that the present procedure accurately traces not only the
angular motions but, more important, the constraint forces
and the four Euler parameters (although these are not pre-
sented here).

20 -
——— step size = 0.01
step size = 0.2
------ slep size = 04
3 | n f
2 : |
2 o0 |} At . ;
5 | \ VT Y
E] / S T AR
=4 B )
5 I A NI { vy,
Ly I N
Yt
I v
20 s . U S S U
0.0 20.0 40.0
Time

Fig. 8 Accuracy comparison on angular velocity w for three dif-
ferent step sizes.

Joint i

Wb = e,

A HED 5 ‘/\

Fig. 9  Double pendulum with spatial joints.
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1.5

-1.5
-1.5 0.0 15

Fig. 10a Trajectories of doubie pendulum on X-Z plane.

1.5

-1.5 0.0 1.5

Fig. 10b Trajectories of double pendulum on X-Y plane.

B. Three-Dimensional Double Pendulum

The second problem with which we have tested the present
procedure is a spatially moving double pendulum as shown in
Fig. 9. The governing equations of motion become those of
two separate rigid bars, except that they are connected by two
spherical joints. From Fig. 9 we have the following quantities:

di=d-Y wxz =0, i=1.2 (42)
M = diag [m', J', m?, 12} 43)
I %i'x 0 0 @
Tl o —wEx I —WhEx
1
Fw= &}
_ 0 -
0
fi= - 0 . =12 (45)
wywi(Jr — J3)
wyw (3 = J))
wyw(Jy — J3)
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i = [i‘i, w} d=1% 7 27, o=la,en ) (46)
A= [7\|- )\2- >\3. A4, )\5. )\(JT (47)

In the preceding equations, Yz is the vectorial distance
from the center of the bar to the spherical joint constraints, m
and J are the three translational and rotatory-inertia matrices,
z is the skew symmetric matrix formed by the three compo-
nents of z, x implies a vector cross multiplication, and the
superscript designates the ith bar.

The pendulum is originally positioned in a gravity field with
initial horizontal angular velocities (v = w{® = 1). Figure 10
shows the spatial trajectories of the two mass centers as pro-
jected on the horizontal surface and on the vertical plane. It is
noted that the two trajectories form a similar pattern. The
constraint forces and angular velocities, although not reported
here, exhibit patterns that are analogous in their characteris-
tics for the two joints and two mass centers, respectively.

We have performed convergence studies by using different
step sizes h£. Numerical evaluations indicate, as with the
rolling-ball problem, that when the step-size samples are more
than 20/period, the present procedure yields both good accu-
racy and stability.

C. Closed Four-Bar Linkage

The final problem is a simple closed four-bar linkage, com-
posed of four individual bars connected with five spherical
joints (see Fig. 11). The governing equations of motion for
this problem are identical with those of the previous section,
except that the gradient of the constraint equations 8 is given
by

B, 0
B, B}
B = 8} B (48)
B} B}
L 0 B:
where
By = {1, vix], B = - vt x |
B;:[-—',—‘/zix} (49)
A\-“b.‘ 5th joint m=m;=my;=m = 1
4th joint L=lhh=L=L=1
D .
[ 3rd joint ‘
"’ \;”db “‘,\1“/‘4'L 1t joint
o= 1 ar z
ra 2nd joint /l\
X Y
Fo=1

Fig. 11a Initial configuration of the closed four-bar linkage.

Fig. 11h  Motion and trajectories of the closed four-bar linkage.
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Fig. 12b Constraint forces of the closed four-bar linkage.

The body-fixed coordinates and constraint conditions for
this problem have adopted the same procedure as in the pre-
ceding pendulum problem. To trigger large rotational mo-
tions, two vertical forces (F!" = F® = 1) are applied at the
center of mass of the first and fourth bar (see Fig. 11a). Figure
11b indicates the motion of each bar for 8 s run time. Note
that the trajectories of each joint can also be seen from the
plot. Because of the symmetry of the geometry and the applied
forces, one should expect corresponding symmetries between
the angular velocities of the first bar compared with those of
the fourth bar, and so on (see Fig. 12a). This is also the case
with the constraint forces as manifested in Fig. 12b.

We investigated numerical solutions for different step sizes
h. The results show that when step size A is less than 0.075, the
procedure proposed here maintains stability with acceptable
accuracy.

VII. Discussion

In this paper, we have presented a computational procedure
for direct integration of the MBD equations with constraints.
Because of its step-advancing nature, the procedure is labeled
an explicit-implicit staggered algorithm explicit for solving the
CINT and implicit for Lagrange multipliers to incorporate
constraints (LINT). The present generalized coordinate solver
(CINT) carries out its task in a partitioned manner in which
the translational motions are integrated separately from those
of the rotational parameters.

Numerical experiments reported herein and additional ap-
plications investigated so far indicate that the present proce-
dure yields robust solutions if the step size gives more than 20
samples for the period of the apparent highest response fre-
quency of a given multibody system.?' Hence, the present
procedure appears to have accomplished the following.
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Because of the modular implementation of the present
MBD solution procedure, the task of interfacing the present
MBD solution modules with additional capabilities such as
active controller, observer, and other analysis and design soft-
ware modules becomes relatively straightforward. Such soft-
ware architecture is in contrast to most existing programming
practice in which several analysis capabilities are embedded
into a single monolithic program. .

For closed-loop multibody systems and/or problems with
complex topology, in which it is impractical and inadvisable to
eliminate the constraints, the present procedure facilitates a
straightforward construction of the governing equations qf
motion with appropriate constraints. The generalized coordi-
nates and the Lagrange multipliers can then be solved in a
partitioned manner.

The update of angular orientations is based on the Eulgr
parameters by adopting the midpoint implicit formula. This
avoids potential computational complications, as the angular
orientation matrices remain singularity free.

Application of the present procedure to flexible multibody
systems is currently being carried out, and preliminary results
are quite encouraging. We hope to report in the near future on
results with flexible-body dynamics as well as on results with
large-scale multibody problems.

Finally, a preliminary stability analysis of the present proce-
dure, although not reported here, has been conducted. The
analysis results indicate that the procedure is stable provided
the step size satisfies

h<2/(0 + Wl + wh)”? (50)

A separate article on the stability issue is presently under
preparation; we plan to publish it in the near future.
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Abstract. This paper reports on our experience in solving large-scale finite ele-
ment transient problems on the Connection Machine. We begin with an overview
of this massively parallel processor and emphasize the features which are most
relevant to finite element computations. These include virtual processors, par-
allel disk I/O and parallel scientific visualization capabilitics. We introduce a
distributed data structure and discuss a strategy for mapping thousands of pro-
cessors onto a discretized structure. The combination of the parallel data struc-
ture with the virtual processor mapping algorithm is shown to play a pivotal role
in efficiently achieving massively parallel explicit computations on irregular and
hybrid two- and three-dimensional finite element meshes. The finite element ker-
nels written in C* have run with success to solve several examples of linear and
nonlinear dynamic simulations of large problem sizes. From these example runs,
we have been able to assess in detail their performance on the Connection Ma-
chine. We show that mesh irregularitics induce an MIMD (Multiple Instruction
Multiple Data) style of programming which impacts negatively the performance
of this SIMD (Single Instruction Multiple Data) machine. Finally, we address
some important theoretical and implementational issues that will materially ad-
vance the application ranges of finite element computations on this highly parallel
processor.

I INTRODUCTION

Parallel computers are having a profound impact on computational mechanics.
This is reflected by the continuously increasing number of publications on finite
elements and parallel processing. Not only have some computational strategies
been re-designed for implementation on commercially available multiprocessors,
but also some innovative algorithms have been spurred by the advent of these new
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machines. However, many of the reported parallel finite element simulations have
been on systems with a few processors. Examples of these systems are Intel’s iPSC
with 32 processors (reported by Farhat and Wilson [1]), JPL/Caltech’s hypercube
with 32 processors (Lyzenga, Raefsky and Ilager [2], and Nour-Omid and Park
[33]), Alliant’s FX8 model with 8 processors (Belytschko and Gilbersten (3], and
Farhat and Crivelli {4]), and CRAY’s systems with up to 4 processors (Benten,
Farhat and Jordan [5]). (For more complete lists of references on this topic see
White and Abel [6] and Noor [7].) While great speed-ups were measured on these
coarse to medium grain machines, Farhat [8] has shown that traditional vector
supercomputers could not be outperformed in finite element simulations (except
of course on systems which connect more than one vector superprocessor, such
as the CRAY X-MP and CRAY-2 systems, cach of which has 4).

Recently, massively paralle]l machines have demonstrated their potential to
be the fastest supercomputers, a trend that may accelerate in the future. While
solving the shallow water equations, McBryan has reported that the Connection
Machine (CM.2 in the sequel) (65536 processors) was three times faster than the
four-processor CRAY X-MP [9]. Gustafson, Montry and Benner have developed
highly parallel solutions for baffled surface wave equations, unstable fluid flow
and beam strain analysis, and have reported performances on NCUBE’s 1024-
processor hypercube which are close to those of vector supercomputers [10].

The objective of the present study has been: first, to evaluate the multipro-
cessing features of the CM._2 that are relevant to finite element computations,
second, to develop a suitable finite element data structure which exploits the
system architecture, third, to implement a decomposition/mapping procedure
that matches as far as possible the layout of the processors to the finite element
meshes, and fourth, to assess those implications of finite element analysis on the
CM_2 that should be considered in the design of future massively parallel pro-
cessors. Hence, we focus primarily on implementational issues that are critical
for the full exploration of the multiprocessing capabilities of the CM.2, and only
secondarily on solution algorithms, as far as they impact the present study on
implementational issues.

The finite element equations of motion for structural systems can be ex-
pressed as:

Md + F"*(d,d) = F* (1)

where M denotes the positive definite lumped mass matrix, F" and I denote
the internal and external force vectors, and d, d and d denote respectively the
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acceleration, velocity and displacement vectors. In the linear case, the internal
force vector becomes:

F'" = Dd +Kd (2)

where D and K are the damping and stilffness matrices respectively, which are
positive semi definite. In this work, an eventual damping is assumed to be pro-
portional to the mass and stiffness.

The algorithmic nature of a candidate solution method for the structural
dynamics equation (1) can significantly influence the software requirernents, data
communications and arithmetic efliciency. As our main focus is on implementa-
tional issues rather than algorithmic ones, we have decided on a simple explicit
time integration procedure. Hence, we choose to integrate equation (1) with the
fixed step explicit central difference algorithm because (a) it is inherently parallel,
and (b) it has the largest undamped stability limit among second-order accurate
explicit linear multistep algorithms, as has been demonstrated by Krieg [11] and
Park [12]. In our context, it is expressed as:

snt1/2

d +n—1/2

=d + hM~YF(t") - F*(d",d"))
dn+1 =d" + h('i"'*'lfz

(3)

where & is the fixed time step and the superscript n indicates the value at the
discrete time t™.

The remainder of this paper deals with the massively parallel solution of (1)
using (3), and is organized as follows. In Section II, we give an overview of the
CM_2 hardware configuration and empasize those features which are pertinent
to finite element computations. In particular, we address issues that are related
to the processor memory size, to the SIMD architecture, and to the fast inter-
processor communication package, the NEWS grid. In Section III, we discuss
the floating point arithmetic performance of the CM_2 and highlight its current
dependence on the selected language compiler. Algebraic manipulations coded
in *Lisp are shown to be three times as fast as when written in C*. A general
purpose finite element distributed data structure is presented in Section IV. De-
signed originally to handle massively parallel finite element explicit computations
on irregular and hybrid meshes, this parallel data structure is also very efficient
for parallel I/O manipulations and parallel graphic animation. Since the often-
encountered mesh irregularities inhibit the use of the NEWS grid communication
package, we discuss in Section V an alternative decomposition/mapping strategy.
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The decomposition technique is designed to minimize both the amount of com-
munication between different chips and the amount of wire contention within a
chip. The mapping algorithm attempts to reduce the distance that information
must travel. Section VI summarizes the overall organization of the massively
parallel transient simulation. In Section VII, our parallel data structure and pro-
cessor mapping are applied to (3) for the solution of various large-scale transient
problems. Measured performances are analyzed in detail. Mesh irregularities
are shown to be the source of several factors which considerably slow down the
machine. Finally, in Section VIII, we address some important theoretical and im-
plementational issues that will materially advance the application ranges of finite
clement computations on the CM_2. In particular, we note that time integration
numerical algorithms such as explicit finite differences and equation solvers such
as the preconditioned conjugate gradient are implemented using the same paral-
lel data structure and mapping algorithm which are presented in this paper. We
compare the substructuring technique and the virtual processor approach, and
comment on the implications of implicit algorithms for the effective use of the
CM2.

II. THE CONNECTION MACHINE HARDWARE ARCHITECTURE

Here we present an overview of the CM_2 system organization and discuss issues
that are pertinent to massively parallel finite element computations. See Hillis
[13] for an indepth discussion on the rationale behind the CM_-1 (a previous model
of the Connection Machine), the Technical Summary of Thinking Machines Cor-
poration [14] for further architectural information, and McBryan [9] for initial
studies of scientific computations on the CM_1. For the sake of clarily, we sum-
marize the architectural features before discussing their impact on finite element
simulations.

I1.1. System Organization

I.1.1 CM.2: The Parallel Processing Unit

The CM_.2 is a cube 1.5 meters on a side, made of up to eight subcubes (fig.
1). Each subcube contains 512 chips and every chip includes 16 bit serial pro-
cessors which are connected by a switch. Each individual processor has 64 Kbits
(8 Kbytes) of bit-addressable local memory and an arithmetic-logic unit (ALU)
that can operate on variable-length operands. Every two chips may share an op-
tional Weitek floating point accelerator chip. A fully configured CM_2 thus has
4096 (2'2) chips, 2048 floating point accelerator chips, 65536 processors, and 512
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" The CM_2 system provides two forms of communication between the processors:

e a general mechanism known as the router which allows any processor to
communicate with any other processor. Each CM.2 chip contains one router
node i which serves the 16 processors on the chip, numbered 161 through
16 + 15. The router nodes on all the chips are wired together in a 12-
dimensional boolean cube and together form the complete router network
(fig. 2). For example, suppose that processor 117 (processor 5 on router
node 7), has a message to send to processor 361 (processor 9 on router node
22). Since 22 = T+ 2* — 2%, router 7 forwards the message Lo router 6
(6 = 7 — 2°) which forwards it to router 22 (6 + 2%), which delivers the
message to processor 361.

e a more structured and somewhat faster communication mechanism called
the NEWS grid. Bach processor is wired to its four nearest neighbors in a
two-dimensional rectangular grid (fig. 3). Communication on the NEWS
grid is extremely fast and recommended whenever it is possible.

An important practical feature of the CM_2 is the support for wvirtual pro-
cessors. When the CM.2 is initialized for a run, the number of virtual processors
(vp in the sequel) may be specified. If it exceeds the number of available physical
processors, then the local memory of each processor is split up into a number of
regions equal to the ratio between the number of vps and the number of physical
processors. Automatically, for every Paris (PARallel Instruction Set) instruction,
the processors are time-sliced among the regions. If a physical processor is sim-
ulating N vps, each Paris instruction is decoded by the sequencer (as explained
below) only once for N executions. This results in an enhanced user performance.
Also, the use of a vp > 1 allows the pipelining of floating point operations in the
Weitek chips, which provides an additional enhancement to machine performance.

The CM.2 is an SIMD machine. All processors must execute identical in-
structions or some processors may choose to ignore any instruction. Consequently,
an instruction which involves a nested binary branch can see its exection time in-
creased by a factor of two. The SIMD nature of the CM.2 has some disadvantages
in finite element computations, as will be shown.
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II.1.2 The Front End Computer

The parallel processing unit described above is designed to operate under the
programmed control of a front-end computer (FE in the sequel) which may be
either a Symbolics 3600 Lisp Machine or a DEC VAX 8000 series computer. The
FE provides the program development and execution environment. It transmits
instructions and associated data to the CM_2. Instructions from Paris are not
handled directly by the CM_2. After they are issued from the FE, they are
processed by a sequencer which broadcasts them to the CM_2 in the form of low

level operations.
II.1.8 The Data Vault System

I/O has traditionally been the Achilles heel of computers and supercomputers.
Moreover, it is very well known that I/O manipulations can easily dominate the
execution time of a finite element code. The CM_2 I/O system appears to offer
hope for the solution of this problem.

The Data Vault is the CM_2 mass storage system. Each Data Vault unit is
associated with one cighth of a fully configured CM_2. It stores its data in an
array of 39 individual disk drives. With this disk farming system, the concept of
performing parallel I/O is carried through: instead of regarding a file as a serial
stream of bits, the CM_.2 file system regards it as many streams of bits, which are
read or written in parallel, one stream per processor. When eight Data Vaults
operate in parallel, they offer a combined data transfer rate of 320 mbytes per
second and hold up to 80 gigabytes of data.

II.1.4 The Graphic Display System

The CM_2 graphic display system known as the Frame Buffer also incorporates
the concept of parallelism. It allows the user to visualize on a color monitor
screen the data in the processors. The display can be updated as computations are
performed. We have found this tool very useful, not only for real-time animations,
but also for debugging purposes.

The system organization of a CM_2 is summarized in figure 4.
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I1.2. Impact on Finite Element Computations

It is well-known that the solution algorithm (3) can be implemented using only
element-level computations. Hence, if each vp of the CM.2 is mapped onto one
finite element, equation (1) can be efficiently integrated in parallel. The rationale
behind this processor-to-element assignment will be analyzed in Sections IV and
VIIL Here, we discuss the direct impact of the CM_2 hardware on such a decision.

The Local Memory and Element Level Computations

Consider the 9-node curved shell element shown in figure 5.

br—p

TIG. 5. A 9-Node Shell Element

Three displacements and two rotations are attributed to each node, which
amounts to a total of 45 degrees of frecdom per element. Consequently, the
symmetric part of the elemental stiffness matrix, K(9, contains 45*(45 + 1)/2 =
1035 words. If double precision is used, the storage of K9 amounts to 1035*64
= 66240 bits, which excecds the 65536 bits that are available on a single CM_2
processor. On the other hand, if single precision is used, the storage of K
requires 33120 bits, so that 32416 bits are left for the storage of the vectors d("),

d(e), the elemental lumped mass vector M("), and the forces F**(°) and F""(c).
However, even in the latter case, only a vp ratio of 1 can be used. This limits the
size of the finite element mesh to the maximum number of processors available on

10



the CM_2 at hand. Also, it inhibits further performance enhancement as outlined
in Section II.1.

Fortunately, in our case the above storage requirements can be considerably
decreased. The nature of explicit computations is such that F**(d™) can be
directly computed from the displacements at ¢* and the stress-strain constitutive
equation. As a result, the solution process defined in (3) involves only vector
quantities which do not require a large amount of storage, so that vp ratios
between 1 and 4 are possible. However, the reader should keep in mind that the
current local memory size of a CM_2 processor may penalize sophisticated high
order elements and implicit finite element algorithms in general. This restriction
is not encountered on other commercially available hypercubes such as iPSC,
NCUBE and AMETEK among others.

The NEWS Grid and Finite Element Patches

Consider the regular finite element mesh shown in figure 6. Except on the bound-
aries, each element is connected in the same pattern to exactly eight other ele-
ments. Consequently, during the explicit time integration algorithm, cach pro-
cessor communicates with its neighbors in the same manner. Interprocessor com-
munication can be performed with a two step NEWS mechanism (fig. 6).

|

FIG. 6. A Two Step NEWS Mecchanism on a Regular Mesh

ITowever, the beauty of the finite element method resides in the fact that it solves
models with irregular meshes. Typically, a finite element mesh consisis of several
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patches which are connected together using irregular transition regions (fig. 7).
For these often encountered cases, the NEWS grid becomes impractical. Rather,
the router has to be utilized. In Section IV, we describe how a distributed data

structure can guide the router during this process.

I'1G. 7. Transition Zones

SIMD Hardware vs. MIMD Finite Element Computations

Typical finite element meshes comprise more than one type of element. Con-
sider the case where a discretized region is modeled with shell elements that are
stiffened with beam elements. Clearly, the instructions associated with the shell
elements differ from those associated with the beam elements. Consequently, the
vps which are assigned to shell elements and the vps which are assigned to beam
elements cannot execute their segments of code in parallel; for example, the beam
processors have to execute first, then the shell processors. If T} and T, denote
the execution times associated with the instructions for a beam and a shell el-
ement respectively, the total clapsed parallel time for a single instruction over
the set (beams + shells) on an SIMD multiprocessor is T + T,. On an MIMD
multiprocessor, this elapsed parallel time is maz(T;,+T,). Similar sitvations arise
when during the loading some elements turn to be materially nonlinear and some
remain linear. In this case, one should always compute the linear component
of the response (the elastic stiffness for example) before attempting to test the
yielding criterion. However, in spite of these disadvantages SIMD programs can
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still be attractive, because they tend to be easier to debug and rarely suffer from
the synchronization errors which are typical of MIMD codes.

Parallel I/O in Finite Element Computations

At each time step, the computed displacements, velocities, accelerations as well
as strains and stresses need to be stored on disks. This represents a significant
amount of I/O traffic. It has been our experience that the CM.2 Data Vault
system is efficient at reducing the corresponding elapsed time (sce Section VII).

Real-time Graphic Animations

The massively parallel real-time animation of the mesh deformations is a direct
consequence of the availability of the Frame Buffer and the decision of assigning
a vp to a finite element. At each time step, after the node displacements are
found all of the vps concurrently draw the outline of their assigned elements on
the graphic screen. The result is a real-time finite element animation.

III. BENCHMARKING THE CM._2

At the time of writing this paper, the CM.2 supports three high level lan-
guages: C* (pronounced sce-star), *Lisp (pronounced star-lisp), and CM-Lisp
(pronounced see-m-lisp). The first two are extensions of C and Lisp respectively.
Paris is somewhat the assembly language of this parallel processor.

In this section we comment on the results of a set of timing experiments
that were carried out on the CM_2 of the Center for Applied Parallel Processing
(CAPP), at the University of Colorado, Boulder. Since only one eighth of a cube
was available on this system, all results were obtained using 8192 processors.
McBryan [9] has shown that all results demonstrated on subcubes of the CM_2
scale essentially linearly to the 65536 processor system. Consequently, throughout
this paper, megaflop rates are reported after they are linearly scaled to the full
configuration. These experiments provided us with:

e a reference performance for the evaluation of our approach to massively
parallel finite element explicit computations.

e the influence of the vp ratio and that of the high level language compiler
on attainable performances. At this point, we remind the reader that, if
an application requires an amount of local memory (per processor) mg, the
highest vp ratio possible is equal to the closest power of two to the ratio
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between the maximum amount of local memory available on the machine
(currently 8 Kbytes), and m,.

Table 1 reports the megaflop rates for some scientific computations on the
CM_2 at different vp ratios. All statements were written in C*. Each statement is
performed by each processor on its variables. All variables were declared parallel
(local) and float (simple precision), except variable dp which was declared mono
(serial) float, and variable i which was declared mono integer. Timings were
measured using the emtimer routines. Each '+’ operation or **’ operation was
counted as one flop.

TABLE 1. Megaflop Rates Using C*

Parallel Processor = CM_2 - Language =C* - Variable = float

Statement Vp Ratio

1 2 4 8 16 32 64 128 256

ylil+=o*x[i1 || 740 | 808 | 848 | 850 880 - - - -
y=y+o*x 569 | 654 | 699 | 728 743 761 778 791 800
z =x% 409 | 485 | 535 | 569 579 585 600 610 623
dp +=x*y 202 | 359 | 583 | 839 | 1075 | 1240 | 1348 | 1400 [ 1500

Based on these results, we have observed the following:

1. Floating point performance is enhanced at higher vp ratios. This is due to
the fact that for vp ratios greater than one, computations in the Weitek chip
are pipelined.

2. vector saxpys are not slower than scalar ones. This is because memory
addresses are computed on the front end. The additional speed noticed for
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vector saxpys is thought to be due to the overlapping of addressing and
floating point computations.

3. C* appears to handle poly (parallel) assignments poorly. This can be seen by
comparing the performances of the dot product and the vector multiply. Each
of these two veclor operations requires one floating point per processor. In
addition, the dot product requires a reduction (accumulation phase) which
necessitates communication. However, at high vp ratios, the dot product
is twice as fast as the vector multiply! (At low vp ratios, the amount of
floating point computations is not large enough to amortize the price of
communication.) Since the dot product does not store any value in the
processor memory and the vector multiply stores the result of z *y back into
z, this leads us to believe that the C* compiler generates a code which is
very inefficient at handling assignments. This also explains why the saxpy
exhibits a higher megaflop rate than the vector multiply: it has twice as
many floating point computations for one assignment.

The same computations were repeated using *Lisp. The comparison of both
sets of timings for the maximum vp demonstrates a formidable superiority of the
*Lisp compiler (see fig. 8). This is partly due to the fact that it has been used
longer on the CM2 than C*. In spite of the proven superior efliciency of *Lisp
over C*, we have chosen to implement our finite element code using C* because

of our familiarity with C.

MEGAFLOPS 1

TFIG. 8. A Comparison of *Lisp and C* Performances
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IV. FINITE ELEMENT PARALLEL DATA STRUCTURES

Consider again the explicit central difference algorithm:

a"+l/2 _ (.ln—ll2 + hM—l(Fcz(tn) _ Fin(aﬂ,dn))
dn+l — dn + ’Lan+1/2

(1)

The global mass matrix M is assembled once. At each time step t”, the compu-
tations are dominated by the evaluation of the internal forces:

C=Ne|

Fr o= ) / [LS] o d0
e=1 ate

where o is the stress vector, S are the shape functions, L is a partial derivative
operator and (¢) is the area of the ¢ — th finite element. Clearly, the parallel
computation of T'" is best done element-by-element. Thus, equation (1) can be
efficiently integrated in parallel if the CM_2 virtual processors are mapped onto
the elements of the mesh. This is a departure from the grid point massively par-
allel computations advocated by Thinking Machines Corporation for the CM.2

[14]. First, all processors compute concurrently the local forces F“(e)(t") and

F‘”(e) (dn,d"). Next, these contributions are accumulated through communica-
tions among processors that are mapped onto neighboring elements.

In this section, we describe the finite element data structures which we have
selected to drive the massively parallel computations on the CM_2. These are
element oriented, while similar data structures proposed for other hypercubes
are subdomain oriented (sec Farhat, Wilson and Powell [15] and Fox et al. [16]).
In Section VIII, we give further comments on this difference. We group thesc
data structures into two sets.

The first set of data structures deals with clement-level parallel computa-
tions. To be able to perform locally its assigned element-level computations
—that is, to perform these computations without interacting with the front-end
machine—each processor must store in its own memory its element lype (truss,
beam, shell, ..., number of Gauss points, ...), its element material properties
(density, parameters and coefficients for constitutive equations, damping charac-
teristics, thickness, ...), its nodal geometry (nodal coordinatecs, number of nodes
per element), and its boundary conditions (fixed/free degrees of freedom at each
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node, prescribed forces at cach node). This information is compacted in one-
dimensional arrays. In addition, cach processor must also store in its memory
a set of scalars corresponding to computational parameters such as the fixed
time step h, and a scalar or one-dimensional buffer for the temporary storage of
messages to be passed to neighboring processors.

The second set of data structures provides the router with the mechanism
for parallel interprocessor communication. The inability of the NEWS grid to
handle irregular communication patterns has been addressed in Section I1.2. Let p
denote a virtual processor and e, its assigned finite element. In order to exchange

F""(e) ((.ln) and F==(°) (t™), virtual processor p must be able to identify at run time:

e the set of processors mapped onto elements ajacent to e,

e the nodes that e, shares with these elements

e at each shared node, the degrees of freedom which necd to be assembled.
This particular information is vital for meshes with different types of ele-
ments. It guarantees that, for example, a moment is not accumulated with
a force, or that a force in the z direction is not accumulated with a force in
the y direction.

If the above informalion is gathered in a global form on the front-end ma-
chine, most of the execution time which elapses during the accumulation phase
would be due to message-passing between the CM_2 processors and the front-end
computer. On the other hand, if this information is decentralized—that is, if the
memory of processor p is loaded only with the subset of that information which
is relevant to the connectivity of e,—the accurnulation phase can be performed
withoul any message-passing between the CM_2 and the front-end computer.
Consequently, prior to any computation, the memory of processor p is loaded
with the following one-dimensional arrays:

Proc_ait_to_node For each node connected to e, it contains the identification of
the processors that are mapped onto elements which are also
connected to this node. These are stored in a stacked fashion.

Pointer This is a pointer array. It stores in position 1, the location in
Proc_att_to_node of the list of vps that are attached to the node
in the 1 — th local position.

Location For each entry in Proc_att_to_node, this array specifies the local
position of the shared node in the processor that is mapped
onto an element adjacent to e,

The above arrays are set up by the dedicated finite element mesh analyzer
which was presented by Farhat, Wilson and Powell {15]. They require about
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80 integer words per processor. Clearly, this is a very small overhead. The
mechanism of these arrays is depicted in figure 9 for element 1. The mesh patch
is composed of shell and beam elements.

[4 T L4 5 6
‘ ’
7 3
g o 1
1 5
3
2
1
Element 1
Proc_alt_to_node [2,3,3,2]
Pointer [1,2,2,3,5]
Location [1,2,1,2]

FIG. 9. A Distributed Data Structure
for Interprocessor Communication
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There is however one penalty associated with assigning one element to each
vp. The nodes which are common to several elements are duplicated in their
corresponding processors. As a result, about 11% of the total memory available
on the CM_2 is wasted. This is a small price for the highly parallel computations
that are achieved. Given the low cost of memory nowadays, this seems a worth-
while trade. Moreover, this assignment allows I/O manipulations and graphic
post-processing to be trivially parallelized. At each time step, after the nodal
displacements are found, all of the processors draw concurrently the outline of
their assigned elements on the frame buffer and send back the results to the front
end in parallel.

V. THE DECOMPOSITION/MAPPING STRATEGY

Since the mesh irregularities inhibit the exploitation of the NEWS grid, we rely on
the data structures of Section IV to guide the router during interprocessor com-
munication. However, there is still one additional problem to resolve. Lfficiency
in massively parallel computations requires the minimization of both the dis-
tance that information must travel and, more importantly, the “hammering” on
the router. In the case of finite element computations, this implies that adjacent
elements must be assigned, as much as possible, to directly connected processors,
and contention for the wire connecting neighboring chips must be reduced. This
defines the mapping problem - that is, it defines which hardware processor is to
be mapped onto which finite element of a given mesh.

Farhat [19] developed a heuristic algorithm for mapping massively parallel
processors onto finite element graphs and presented some analytical results for
corresponding efficiency improvement. Basically, the algorithm searches itera-
tively for a better mapping candidate through a two-step procedure for the mini-
mization of the communication costs associated with a specific parallel processor
topology. Because it seeks a very fast solution for a machine with thousands of
processors, this algorithm does not guarantee “the” optimal mapping. However,
it has produced very encouraging results on a variety of non-uniform two and
three-dimensional meshes.

In this work, we adapt the mapping algorithm of [19] to our target parallel
processor, the CM_2. The 65536 processors of this machine are packaged into
4096 16-processor chips, each having its own router node. The 4096 router nodes
are arranged in a hypercube of dimension 12. To cope with this topology, we
proceed in two steps. First, we decompose the given mesh into 4096 submeshes,
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each containing 16 connected finite elements. Next, we apply the mapper given
in [19] to identify which hardware chip is to be mapped onto which submesh.
Finally, within each submesh, the clements are numbered randomly between the

chip number and the chip number + 15.

Given a finite element mesh, there are several ways to decompose it into
16-element submeshes (see for example Farhat [17] and Malone [18]). Here, each
submesh is to be assigned to one chip of the CM_2. In figures 10, 11 and 12, we
show two different decompositions for a discretized square domain, D and D,.

FIG. 10. Domain to be Decomposed
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FIG. 11. Decomposition D1 - Bandwith Minimization

FIG. 12. Decomposition D2 - Interface Minimization
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Both decompositions yield 16 submeshes, each with 16 adjacent elements.
Decomposition D; was designed to minimize the communication bandwidth -
that is, the maximum number of different chips with which any chip neced to
communicate. It can be seen (fig. 13) that for D; the bandwidth equals 2, while

for D, it equals 8.
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FIG. 13-a. Interchip Communication Pattern for D1
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It should be remarked that, if the substructuring approach (15, 16} had been
chosen — that is assigning a subdomain to a physical processor, D, would have
been more efficient than D,. For this decomposition, each chip would buffer the
contributions of its interface nodes and send only two messages, one to the chip
at its left and another to the chip at its right. The decomposition D requires the
same chip to send up to 8 buffered messages. These messages would eventually
be shorter, but would still render D> more expensive because of message start-
up costs. However, we have opted for a virtual processor approach — that is
assigning one element to a virtual processor, for reasons that are given in Section
VIIL. For this case, processors exchange information one node at a time, so that
the number of interface nodes associated with a decomposition is more important
than its bandwidth. The reader can confirm that decomposition D, delivers 255
interface nodes, while D3 delivers only 93. Indeed, there is another equally, if not
more important, reason why D, is better for the CM_2 than D;. In the case of
Dy, all of the 16 processors of any chip communicate simultaneously with a set
of processors which are on the same neighboring chip (fig. 14). This generates a
significant amount of contention for the single wire that connects these two chips.
In the case of D, however, one can observe (fig. 15) that:

o for each chip, only 12 out of the 16 processors communicate with processors

onto another chip

e only 3 processors out of these 12 communicate simultaneously with the

same neighboring chip, so that much less contention occurs for the wire

connecting the two chips. We recall that each chip is connected with up to

12 other ones using 12 different wires which can operate in parallel.
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FIG. 14. Wire Contention Induced by Decomposition D1

23



- WiRE ey

—T Witk ay
—_— WL ey

—rbwinc £
LT TIPS —pwinc a
€4 10y o} —|pwnc s

Sr Iai-

T I ——r
10 yime——

FIG. 15. Wire Traffic for Decomposition D2

The decomposition D; was obtained using a general purpose finitc element
decomposer presented by the first author in reference [17). We advocate its use in
conjunction with the mapper given in reference [19] for massively parallcl compu-
tations on the CM_2. The efficiency improvement potential of this preprocessing
phase is demonstrated with the following finite element wave propagation prob-
lem. Figure 16 shows the discretization of a tapered cantilever beam. The beam
is modeled with 4-node isoparametric elements and linearly elastic plane stress
constitutive equations. It is fixed at one end and subjected at the tip of the other
to an impact point loading. The wave propagation nature of the problem dictates
the meshing technique to create elements which are, as far as possible, of equal
size. Since the beam is tapered, transition zones with irregular elements had to
be introduced. Other mesh irregularities are due to the presence of a region with
a hole. The complete mesh contains 8192 elements, which corresponds to an 8K
CM_2. The use of a naive mapping (element ¢ into processor ¢ — 1) would have
resulted in a maximum routing distance between adjacent elements equal to 9.
Our decomposer/mapper reduces this distance to 5. If EF F denotes the efficiency
(speed-up per processor) of the parallel computations using a naive mapping, and
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f is the factor by which the decomposer/mapper reduces the maximum routing
distance between adjacent elements, the theoretical improved efliciency (Farhat,

[19]) is given by:

EFF* = (5)

(1-4)+ 75
For this problem, we have measured an efficiency EFF = 40% on an 8K CM_2.
Since f = 9/5, the predicted improved efficiency is EFF* =54%. A second run
of the problem using the decomposer/mapper has revealed a measured improved
efficiency EFF* = 60%. The discrepancy between the predicted and measured
improved efficiencies is due to the fact that (5) does not account for the wire
contention problem.

R S s s s L

FIG. 16. Discretization and Decomposition of a Tapered Beam
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VI. FLOWCHART OF THE MASSIVELY PARALLEL TRANSIENT
SIMULATION

The overall organization of the solution on the CM.2 of a transient dynamic
problem using the explicit central difference algorithm is depicted in figure 17.
It consists of four phases, namely: mesh preprocessing, data loading, number

crunching, and data unloading.

Read Input File (Front End)
Decompose Mesh and Form Parallel Data Structure (Front End)

Load Parallel Data Structure (Front End - CM.2)

Compute Lumped Mass Matriz (CM_2)
Compute Critical Time Step (CM-2)
Loop on Time Steps (Front End)

{

Compute Internal and Ezternal Local Forces (CM_2)
Assemble Global Forces (Interprocessor Communication)

Compute Velocities, Displacements, Strains and Stresses (CM_2)

Visualize Results (CM_2 - Frame Buffer)
Archive Results (CM_2 - Data Vault)

FIG. 17. Solution of a Transient Problem on the CM_2
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A conservative stable time step for the central difference algorithm is given
by

2
h <=~ (©)

Wrmaz

where ws,fzm is the maximum element frequency of the undamped dynamic prob-
lem. Belytschko has pointed out that it is in fact usually not practical to compute
the maximum eigenvalues of the element directly, for this would increase the cost

of computation considerably [20]. Instead, formulas for upper bounds on wg,f,).z
have been recommended. However, on massively parallel processors such as the
CM_2, the parallelism inherent in the computation of w,(,f,)u is such that this
frequency is obtained at the cost of the frequency of one single element.

The interprocessor communication mechanism for a mesh with more than
one type of element is illustrated in figure 18. For the example shown, the 4-node
elements are activated first. They communicate in four steps, one node at a time.
Next, the 4-node elements are de-activated and the truss elements are selected.
These communicate in two steps. As explained in Section II.2, the scrialization
between different types of elements is due to the SIMD nature of the CM_2.
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VII. EXAMPLES

In this section, we apply our approach to massively parallel finite element explicit
computations to the solution of various transient problems on an 8K CM_2 with
Weitek accelerators. We analyze performance results in detail. We assess the efli-
ciency of our decomposition/mapping strategy at reducing communication time.
We highlight the impact on machine performance of variations in mesh topol-
ogy, finite element modeling, and problem nonlinearities. We also report on the
performance of the Data Vault system for problems that are I/O bound.

For each example, two simulations were carried out. The first one assumed
a linear elastic material. In the second simulation, the material was assumed to
have an elastoplastic behavior governed by a Von Mises yield condition.

VIL.1 E1: Transient Response of a Cracked Aluminium Plate

The quarter of a mesh in figure 19 was generated to study the dynamic response
of a cracked aluminum plate under a uniform time varying loading. The full
mesh contained a total of 4008 plane stress elements and 4073 nodes. Mesh
irregularities were induced by transition zones. The NE WS grid could not be

used.

FIG. 19. A Quarter of a Mesh for a Cracked Plate
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VII.2 E2: Wave Propagalion in a Three-Dimenstonal Bar

The second example considered was the impact of a metallic ball on an unsup-
ported glassy bar. The bar was discretized using 8160 brick elements (fig. 20).
The finite element mesh contained 13500 nodes and 40500 degrees of freedom.
Given the regularity of the discretization, the NEWS grid was used for inter-
processor communication. This example was also re-run using the router for

performance comparison.

FIG. 20. Finite Element Discretization of a Glassy Bar

VIL.8 ES: Shuttle Docking Induced Vibrations in a Space Station

This dynamic analysis was carried out to investigate the vibrations of a space
station model assembled from 5-meter erectable struts. These vibrations were
assumed to be induced by a shuttle docking. The finite element model (fig.
21) comprised 7584 three-dimensional truss elements and 2304 nodes. It was
generated by aligning identical cells along various axes. However, each cell by
itself was irregular (fig. 22) and did not allow the use of the NEWS grid.
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VIL.4 E4: Three-Dimensional Glassy Bar on an Elastic Foundation

The wave propagation example problem E2 was repeated with different boundary
conditions. The glassy bar was assumed to be supported by a layer of foam. The
mesh was comprised of a total of 8164 elements (which is very close to the number
of elements in the former mesh), of which 1636 truss elements were used to model

an elastic foundation.

VIL.5 Performance Resulls and Analysss

All segments of code were written exclusively in C*. Floating-point arithmetic
was performed in single precision (32 bit words). Measured performance results
are gathered in tables 2, 3, 4, 5 and 6. Only example E2 could make use of the
NEWS grid. However, all timings except those given in table 6 correspond to
runs where communication was carried through the router. Execution times are
given in seconds and correspond to a sample of 2000 time integration steps and
a vp ratio equal to 1.

TABLE 2. Overall Measured Performance

for Various Transient Finite Element Computations

Example Mesh Data Loading  Equation of Motion  Sustained

Prcg'%gggjgg in ;l_hg CM 2 Solvin MFELOPS
E1 - elatic 1.04 secs 5.47 secs 861 secs 400
E1 - elastoplastic 1.04 secs 5.47 secs 1033 secs 480
E2 - elatic 1.98 secs 31.78 secs 4139 secs 392
E2 - elastoplastic 1.98 secs 31.78 secs 4718 secs 440
E3 - elatic 1.28 secs 13.56 secs 887 secs 254
E3 - elastoplastic 1.28 secs 13.56 secs 896 secs 256
E4 - elatic 2.11 secs 33.00 secs 4770 secs 340
E4 - elastoplastic 2.11 secs 33.00 secs 5440 secs 386

The mesh preprocessing phase corresponds to the decomposition of the finite

element mesh as explained in Section V. It also includes the setup of the finite
element parallel data structure, which is then distributed across the processors.
Both of these phases are shown to require relatively very little computer time. It
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can also be observed that in the worst case, the nonlinear computations consume
only about 15% additional time. This is due to the explicit nature of the radial
return mapping algorithm that was used. Because of “what you see is what you
get”, the reported mflop rates should be compared to those measured in Section
IIT and not to the theoretical peak performance of the machine. It should also be
noted that our C* code still leaves room for further optimizations.

TABLE 3. Data Vault System Performance

Example Solving Equation Unloading Results ~ Unloading Results
of Motion on Front End on Data Vault
E1l 861 secs 5340 secs 3.81 secs
E2 4139 secs 16400 secs 12.61 secs
E3 4 887 secs 9500 secs 7.04 secs

For examples E1, E2, and E3, the computed displacements, strains and
stresses were archived on secondary storage after each time integration step. Two
solutions were compared. In the first case, these results were brought back to the
front end and stored in appropriate disk files. For that case, the measurements
given in table 3 demonstrate that the amount of involved 1/O dominated the
simulation total time. In the second case, the results were transferred in parallel
directly to a Data Vault System. The speed-up provided by the Data Vault is
shown to be of the order of 1400! This parallel I/O capability is what was most
lacking on earlier hypercubes [18].
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TABLE 4. Computation vs. Communication

Example Solving Equation Computation ~ Communication
of Motion Time Time
E1l 7861 secs 460 secs 401 secs
E2 4139 secs 1959 secs 2180 secs
E3 887 secs 260 secs 627 secs
L4 4770 secs 2340 secs 2430 secs

If Tp and T, are respectively the computation parallel time and the com-
munication parallel time, and N, is the number of available processors on a
given parallel machine, the achieved efficiency (speed-up per processor) can be
expressed as:

1 NTep 1

FFF = — =
Np Tcp+Tcm 1+'7‘:;-"i:':

The results given in table 4 indicate that efficiencies of 53%, 47%, 29% and 419%
are achieved respectively for examples E1, E2, E3 and E4. If one refers to the
performance results of Section III, it can be seen that the sustained mflop rates
reported in table 2 are consistent with these efficiencies. At the first glance, these
efficiency results appear to be very pessimistic. However, they are well above
the 10% often obtained on current vector supercomputers [21]. The reader can
observe that the timing results for example E4 are very close to the cumulative
timings of examples E2 and E3, which illustrates the impact of the SIMD nature
of the CM_2 on the MIMD nature of finite element computations. It should
also be noted that while the communication time is fixed for a given mesh, the
computation time increases with the complexity of the analysis. Thus, highly
nonlinear formulations which include large dcformations are expected to yield
higher efficiencies than those deduced from table 4.
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At this point, we give further details regarding interprocessor communication
in the context of finite element explicit computations. As outlined in Section
V, the finite elements of a mesh exchange their local contributions one node
at a time. TFor a given finite clement, this information exchange procedure is
organized around two nested loops. The outer loop is carried over the nodes that
are connected to this element. The inner loop is carried over the neighboring
elements that are attached to each local node. Using a C notation, this is written

as:

for (node = 1; node < my-nodes; node++) (7)
{
start = pointer[node][; stop = pointer[node + 1] - 1;
for (position = start; position < stop; position++) (8)
{
neighbor = proc_att_to_node/position/;
cxchangc(variablc,myself,ncz'ghbor);

}
}

where my_nodes s the total number of nodes that are connected to a given fi-
nite element and proc_att_to_node is the array containing the identification of the
neighboring elements. Clearly, these variables are element dependent. The total
number of communications to be performed by one processor is detcrmined by
the product Pl =d« (pointer|my.-nodes + 1] — 1) which is both element and
mesh dependent. The CM_2 being an SIMD machine, the communication time is
determined by max.,{P,,!,c,z}. For a regular mesh composed of three-dimensional
truss elements (d = 3) or 4-node plane elements (d = 2), every node is attached
to 4 elements, so that 24 communication instructions per time integration step
are required for the truss element and 32 for the 4-node planec element. However,
table 4 indicates that the space station example exhibits a longer communication
time than the aluminum plate problem. The reason is that in the mesh of exam-
ple E3, some truss elements are connected to 12 other elements. Because of the
SIMD nature of the CM_2, the element with the highest degree of connectivity
determines the communication time. For a regular mesh with 8-node solid ele-
ments (d = 3) each time integration step is followed by 192 communication steps,
since each node can be attached up to eight different elements. This is reflected in
table 4 where example E2 is shown to possess by far the longest communication
time (2180 secs). In summary, the amount of communication involved in finite el-
ement explicit computations on the CM. 2 is determined by the element topology
and order, and the mesh irregularities. Because only d nodal information are ex-
changed at a time among the CM_2 processors, three-dimensional and high order
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elements substantially increase the communication time. Mesh irregularities also
adversely affect the amount of communication because of the SIMD nature of the
CM_2. 1t is interesting to note that elements which transmit physical information
across edges and faces such as those proposed by De Veubeke, [22] would require
much less communication than traditional elements. These elements should be
revisited for computations on massively parallel processors such as the CM.2.

An in-depth investigation of the communication phase was carried out. It
was found that most of the communication time was elapsed in the header of loop
(8). This loop header involves the quantities start and stop which differ from one
processor to another in the presence of mesh irregularities and different element
types. Consequently, the front end computer has to process and manage several
different loops rather than a unique one, which is not very efficient on an SIMD
machine. The time associaled with the headers of loops (7) and (8) is referred
to as software overhead in table 5. The true time that is elapsed in effective
communication among the processors is shown to be only a fraction of the overall
communication time (see table 5).

TABLE 5. True Communication Time

Example | Computation Effective Software
Time Coomunication Time Overhead
El 460 secs 81 secs 320 secs
E2 1959 secs 1380 secs 1280 secs
E3 260 secs 146 secs 481 secs

Because it was designed to handle arbitrary meshes, our C* code did not
make use of the NEWS grid package. However, a special module that incorporated
calls to the NEWS grid was written specifically for the regular mesh of example
E2. Execution times for this example using both the NEWS grid and the router
are shown in table 6. Clearly, a high price is paid for the handling of eventual
mesh irregularities.
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However, the irregular pattern of communication is fixed in time. Thus, a
considerable improvement can be achieved if this pattern is evaluated at the first
time step, then somehow stored in the CM_2 for use during subsequent time steps.
We believe that this is an issue that massively parallel computer architects should

investigate.

TABLE 6. Router vs. NEWS Grid

Example [ Computation Communication Time  Communication Time
Time Using the NEWS grid Using the Router
E2 4139 secs 560 secs 2660 secs

In order to assess the performance of the decomposer /mapper module, exam-
ples E1, E2 and E3 were re-run with the naive shifted identity mapping (element
¢ in processor ¢ — 1). Figure 23 demonstrates that the true communication time
can be reduced by as much as 60 %. Unfortunately, the total execution time
is reduced only between 10% and 17% because of the communication software
overhead associated with mesh irregularities.
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FIG. 23. The Decomposer/Mapper Performance

VIII. CONCLUDING REMARKS

We have reported hercin on our experience in performing transient finite element
computations on the CM_2. We have presented the architectural features of this
parallel processor and discussed their impact on finite element computational
strategies. In particular, those features which distinguish the CM_2 from earlier
hypercubes have been emphasized. These include the virtual processor concept
and the fast parallel [/O capabilities. The processor memory size of 64 Kbits
has been shown to penalize high order elements. We have also described and
discussed a domain decomposition strategy and a mapping algorithm which are
suitable for massively parallel processors such as the Connection Machine. The
main idea behind the decomposition technique is the minimization of both the
amount of wire contention within a chip, and the amount of communications be-
tween different chips. A given finite element mesh is partitioned into 16-element
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subdomains which correspond to the 16-processor chips of the Connection Ma-
chine. This partitioning is carried out in a way that minimizes the number of
nodes at the interface between the subdomains. As a result, only those processors
which are mapped onto finite elements at the periphery of a subdomain commu-
nicate with processors packaged on different chips. Moreover, this partitioning is
such that the connectivity bandwidth of the resulting subdomains is large enough
to allow an efficient use of the interchip wires. The mapping algorithm attempts
at reducing the distance information has to travel throug the communication
network. In essence, it searches iteratively for an optimal mapping through a
two-step minimization of the communication costs associated with a candidate
mapping. Various issues related to the single instruction multiple data stream na-
ture of the CM_2 and pertinent to computational mechanics have been addressed.
Measured performance results for realistic two and three dimensional transient
problems have been reported. Three-dimensional and high order elements have
been shown to induce longer communication times. Mesh irregularities have been
shown to slow down the computation speed in many ways. The Data Vault has
been demonstrated to be very effective at reducing the I/O time.

Now, we briefly highlight some additional implementational and theoretical
issues that we hope will materially advance the application ranges of finite element
computations on this highly parallel processor.

Virtual Processor Ratio vs. Substructuring

In this work, we have assigned when possible more than one finite elernent to a
single processor using the virtual processor feature of the CM_2. However, an-
other way to obtain the same result is to assign a substructure to an individual
processor (Farhat, Wilson and Powell, [15] and Fox et al., (16]). From a numer-
ical point of view, both approaches are equivalent. However, these two distinct
approaches differ in their implementations and may perform differently. The
substructure approach requires each processor to work with both external and
internal data structures. The set of external data structures stores information
about substructure interconnections. These are similar to the ones described in
this paper. The set of internal data structures stores the connectivity table of
the elements within a substructure. The computations within each substructure
are carried out by looping over the elements of that substructure. The advantage
of this approach is a saving in storage since the substructure internal nodes are
uniquely defined, and a faster computation of the results associated with these
nodes. Moreover, the global results at the internal nodes can be accumulated
without any explicit call to a message-passing function. The global quantities
at the boundary nodes are accumulated using the router and the external data
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structures. However, the substructuring approach requires that the sequencer
broadcast the same instruction several times, once for each element of the sub-
structure, which increases the overall wall clock execution time. Moreover, this
approach does not allow the Weitek chip to pipeline the computations over the
elements of the substructure.

On the other hand, the virtual processor approach requires that each element
communicate explicitly with its neighbors, even if these are assigned to the same
processor. Of course, this communication is virtual since it is within the proces-
sor itself and generates minimal additional overhead. On the positive side, the
virtual processor approach utilizes only one type of data structure and exploits
the pipelining capabilities of the Weitek chip. The latter feature significantly
enhances overall performance, as demonstrated in Section IIl. Consequently, we
advocate the use of the virtual processor ratio rather than the substructuring
technique, especially if the processor memory size is to be increased in the future.

Implieit Algorithms and the CM_2

In this report, no attempt has been made to design a novel parallel algorithm for
the solution of the differential equation of motion. We have selected the central
difference algorithm because of its inherent parallelism, which allowed us to focus
on implementational issues and to fully explore the multiprocessig capabilities
of the CM_2. Our experience suggests that a whole class of explicit and semi-
implicit dynamic and static algorithms can be implemented on the CM.2 in a
very similar way. Among others, we cite the EBE algorithms (Hughes et al.,
(23]), the EBE preconditioners (Hughes, Ferencz and Hallquist, [24]), and the
Jacobi preconditioned conjugate gradient algorithm (Golub and Van Loan, [25]).
However, the solution of some static and transient problems may necessitate
the use of an implicit algorithm, which usually implies the solution of a set of
simultaneous banded equations. If the global symmetric stiffness matrix K is
banded, with semi-bandwidth b, then it is well known (see for example Ortega
and Voigt, [26]) that Gaussian elimination methods for solving Kd = F allow
at each step on the order of % pairs of (+,x) to be processed concurrently, but
require significant communication because the b entries of the pivot column must
be made available to all other processors. Several parallel algorithms based on
these elimination methods were designed for finite element applications and were
implemented on ealier hypercubes (see for example, Farhat and Wilson [27] and
Utku, Salama and Melosh, [28]). Typically, a processor was assigned to a set
of matrix columns. Results from our previous experience with the early version
of Intel’s iPSC suggest that direct solvers are feasible on hypercubes only when
the number of available processors, N,,, is much smaller than the bandwidth b
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of the given finite element problem, so that communications do not dominate
computations. On the iPSC-1, a message that was sent from one extreme corner
of a 5-dimensional cube to the other would result in an elapsed time 475 times
longer than the time to perform a floating point multiplication (see Rudell, [29]).
However, on a 10-dimensional subcube of the CM.2 we have measured the ratio
of a broadcast to a floating point computation to be only about 2.87. This
observation suggests that for problems with b > 360, a processor could be mapped
onto a few matrix entries and a parallel direct solver could be feasible on the
CM.2. For problems with smaller bandwidth, direct solvers which operate on
more than one pivot at a time (Alaghband and Jordan, (30]; Peters, [31]) should
also be investigated for implementation on massively parallel processors.

There is an additional issue which has to be examined before attempting to
solve finite element equations on the CM.2 with a parallel direct solver. This issue
is related to the balance on massively parallel processors between the number
of available processors, N,,, and the processor memory size. Let M"™ denote a
two-dimensional regular n by n finite element mesh, where n is the number of
elements along one side. If d is the number of degrees of freedom at a given node,
the semi-bandwidth of M™ is b = d(n + 3) and the total number of mathematical
unknowns is N = d(n + 1)2. Tor this mesh, the storage cost of K amounts to
Nb = d?(n+3)(n+1)2 words. The total amount of storage available on the CM_2
is S = N, *xmp , where N, is the number of available processors and m, = 8
Kbytes is the current size of the processor memory. Let NE = n2 . be the
maximum number of elements for which M™ has a banded stiffness matrix that
can be factored in-core on the CM_2. Table 7 below gives the values of NE for
different values of d and for the case of a fully configured Connection Machine
(N, = 65536). Values of NE are shown for both single precision (32 bit words)
and double precision (64 bit words) floating-point arithmetic.
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TABLE 7. Number of Allowable Elements vs. DOF /Node
for the Two-Dimensional Case

N, = 65536 d=2 d= d=4 d= d=6

Single Precision | NE || 102400 | 59536 | 40401 | 29929 | 23409

Double Precision | NE 64009 | 37249 | 25281 18769 | 14884

Clearly, except for the case where d = 2 and floating-point arithmetic is done
in single precision, NI is smaller than N,,. Similarly, the case where M™ is an n
by n by n three-dimensional regular mesh is assessed in table 8 below for various

values of d.

TABLE 8. Number of Allowable Elements vs. DOF /Node
for the Three-Dimensional Case

N, = 65536 d= d= d=4 d=5 d=6

Single Precision | NE | 29791 | 19683 | 13824 | 10648 | 8000

Double Precision | NE || 19683 | 12167 9261 6859 | 4913
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For this case, NE is much smaller than Np, even for d = 2 and for single
precision floating-point arithmetic. For d = 6 (some shell elements), only 8000
elements (4000 elements) can be included in M™ when computations are carried
out using single precision (doubl precision) floating-point arithmetic.

It is noted that the eventual solution of a system of equations is only
one phase of several finite element computational sequences. In linear three-
dimensional analysis, this phase dominates the computer execution time. How-
ever, in the nonlinear analysis of flexible space structures most of the computa-
tional time is usually spent in modules that perform element level computations
[32]. These include the evaluation of generalized nodal internal forces and/or
elemental stiffness matrices. Consider now a mesh M™ where the number of el-
ements NE is chosen so that the upper part of the banded stiffness matrix K
fills the N,, processor memories completely. The preceding complexity analysis
demonstrates that the balance on the CM.2 between the number of processors
and the memory size of each processor is such that NE is much smaller than N,,.
Hence, if a direct algorithm is used to solve a finite element system of equations,
the N, processors will be active during the solution phase, but N, — E processors
will remain idle during the rest of the phases which involve clement level com-
putations. Consequently, an in-core direct solution strategy would not efficiently
utilize the computational power of the CM.2 in a highly nonlinear finite element

analysis.
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ABSTRACT

The various forms of parallel numerical algorithms that speed
up finite element computations are as numerous as the number
of researchers working on the problem. In this paper, we re-
view some of these parallel computational strategies and assess
their adequacy for a given architecture and a given problem. We
also report on the performance of both extreme parallel hardware
technologies on real-life structural problems.

I INTRODUCTION

The realistic simulation of the nonlinear dynamics of complex
structural systems remains beyond the feasible range of tradi-
tional computers. It has been the author’s experience that the
simulation of the transient response of a space station model with
100,000 degrees of freedom to various loading configurations con-
sumes over 10 CPU hours on a CRAY-2 supercomputer and that
the simulation of the deployment of a space structure is even more
computationally demanding, especially if the control/structure in-
teraction problem is to be included. The aeroelastic response of
a detailed wing-body configuration using a potential flow theory
requires about 5 CPU hours using the same supercomputer. In
order to establish the transonic flutter boundary for a given set
of aeroelastic parameters, about 30 aeroelastic response analyses
are required, which brings the total CPU time to 6 days. If the
full Navier-Stokes equations are to be solved, it is estimated that
the CPU time increases by two orders of magnitude. It is also
clear that large amounts of data can be generated in a large-scale
transient structural analysis or a large-scale computational fluid
dynamic solution. This raw data has to be interpreted, in real-
time if possible, in order to be understood.

Clearly, the true potential for execution improvement lies in
massively parallel and/or parallel/vector supercomputing. The
comimercial supercomputer manufacturers of the last decade have
extended their products into configurations that use a few vector
processors coupled around a massive shared memory (CRAY-2,
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CRAY X-MP, CRAY Y-MP). Supercomputers with a larger num-
ber of vector processors are also under development (CRAY3).
Concurrent multiprocessors with much finer granularity and a
wide range of interconnection strategies are now appearing. Re-
cently, massively parallel computers such as the CONNECTION
MACHINE have demonstrated their potential to be the fastest su-
percomputers, a trend that may accelerate in the future { McBryan
[1]). The advent of advanced frame buffers and high performance
workstations such as Ardent’s TITAN now makes real-time visu-
alization possible.

Moving engineering applications to concurrent processors
faces significant obstacles that will have to be resolved as such
machines become more and more available. The obstacles center
on algorithms, methods, languages, and education. In this paper.
we address some of these issues in the context of finite element
computations.

The various forms of parallel numerical algorithms that speed
up finite element computations are as numerous as the number of
researchers working on the problem. Extensive lists of references
on this topic may be found in the surveys of Noor [2], White
and Abel {3], and Ortega, Voigt and Romine [4]. Throughout
this paper, we discuss the adequacy of a set of parallel finite el-
ement computational strategies (mesh preprocessing, solution al-
gorithms, 1/O manipulations) for a given parallel processor and a
given structural and/or mechanical problem. This leads us to the
introduction of the notion of algorithmic portability in addition to
the problem of languege portability.

The remainder of this paper is organized as follows. In Sec-
tion II, we present an overview of the present status of paral-
lel computers that is pertinent to finite element computations.
Through the examples of SIMD (Single Instruction Multiple
Data}, MIMD (Multiple Instruction Multiple Data), local memory
and shared memory multiprocessors, we address the impact of
hardware architecture on the design and implementation of par-
allel algorithms and parallel data structures. Section III focuses
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on local memory MIMD hypercubes and Section IV on shared
memory multiprocessors. Section V summarizes the author's ex-
perience with massively parallel finite element computations on
the CONNECTION MACHINE. Performance results and con-
cluding remarks are offered in Section V1 and Section VIL

Because of space limitations, algorithmic details and formulas
are avoided. The paper emphasizes major results and conclusions.
For specific details, the reader is urged to consult the references.

II WHAT ONE MUST KNOW ABOUT PARALLEL
PROCESSORS

Several parallel computers have already been marketed commer-
cially. Rather than discuss these individually, we here focus on
presenting an overview of their architecture and emphasize the im-
pact of their hardware features on the design and implementation
of parallel computational strategies for finite element simulations.
A review of some of the commercially available parallel systems
can be found in Babb [3], where programming examples are also
provided.

Multiprocessors can be generally described by three essential
elements: granularity, topology and control.

Granularity relates to the number of processors and involves
the size of these processors. A fine-grain multiprocessor features
a large number of usually very small and simple processors. The
CONNECTION MACHINE (65,536 processors) is such a mas-
sively parallel supercomputer. NCUBE'’s 1024-node and iPSC’s
128-node models are comparatively medium-grain machines. On
the other hand. a coarse-grain muitiprocessor is typically built by
interconnecting a small number of large, powerful processors, —
usually but not necessarily vector processors. ALLIANT FX/8 (8
processors), IBM 3090-VF (6 processors), CRAY X-MP (4 pro-
cessors), CRAY-2 (4 processors) and the ETA-10 (8 processors)
are examples of such multiprocessors and supermultiprocessors.
Granularity directly affects the parallel computational strategy.
On a coarse-grain multiprocessor, finite element computations can
be parallelized at the subdomain level. On a fine-grain machine,
they are best parallelized at the element and sometimes at the
degree of freedom level. When designing parallel algorithms for
finite element computations on coarse grained vector supermulti-
processors, one should preserve vectorization. This is because the
potential speed-up due to interconnecting a few vector processors
cannot compete with the speed-up due to the vector capabilities
of a single processor. This matter is addressed and emphasized
in Section IV.

Topology refers to the pattern in which the processors are
connected and reflects how data will flow. Currently available
designs include hypercube arrangement, network of busses, and
banyan networks. Usually, the interconnection topology is re-
lated to the memory organization. For example, iPSC, NCUBE
and the CONNECTION MACHINE are local memory multipro-
cessors with a hypercube topology. On these systems, a processor
is assigned its own (local) memory and can only access this mem-
ory. Independent processors communicate by sending each other
messages. Efficient solution of finite element simulations on these
machines requires minimizing the interprocessor communication
bandwidth, especially when the communication hardware/software
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is relatively slow. This requires the mapping of adjacent elements
as much as possible onto directly connected processors, which may
be no trivial problem. On the other hand, the processors on a
shared memory system such as ALLIANT FX/8 are connected
through a common memory bus and can access the same (global)
large memory system. Adequate finite element parallel data struc-
tures are crucial for efficient computations on both shared and
local memory multiprocessors. On a local memory machine, one
has to introduce the concept of distributed data base and data
structure. Each local memory is loaded only with the data rele-
vant to the computational task assigned to its attached processor.
For a system with thousands of processors. the total amount of
available memory can be very large. Yet, it is the storage capac-
ity of each local memory which really matters. Different finite
elements require different amounts of data to be stored. For each
finite element in the mesh, a material and geometrical nonlinear
high order shell element may require an amount of data storage
two orders of magnitude higher than a simple linear truss element.
Hence, one may be able to assign one or several finite elements
of a certain type to one processor but may fail in the attempt to
assign one or several elements of another type to a similar pro-
cessor. Also, in the case of MIMD machines such as iPSC and
NCUBE, one has to ensure that the compiled subroutines can be
accommodated on the local memory. Consider the case where a
processor is mapped onto a submesh containing different types of
elements. In this situation, one has to load into the processor's
local memory all the element libraries for the types encountered
in the assigned submesh. Generally, one can overcome these prob-
lems by devising an intelligent partitioning scheme and a compact
data structure. Careful data structures must also be designed for
shared memory multiprocessors to avoid potential serializations
due to memory conflicts.

Control describes the way the work is divided up and syn-
chronized. Of particular interest are the SIMD and MIMD ma-
chines. The CRAY-2 (4 processors) and iPSC (128 processors) are
respectively a shared memory MIMD supermultiprocessor and a
local memory MIMD hypercube. They can simultaneously ex-
ecute multiple instructions which can operate on multiple data.
The CONNECTION MACHINE is an SIMD system where a sin-
gle instruction is executed at a time, — an instruction which can
operate on multiple data. Tvpically, on an SIMD machine a sin-
gle program executes on the front end and its parallel instructions
are submitted to the processors. On an MIMD parallel processor
separate program copies execute on separate processors.

Practically, local memory parallel processors are more diffi-
cult to program than shared memory multiprocessors. However,
this does not imply that optimal performance is easily achieved
on shared memory machines, especially when vector processors
are interconnected. It is believed that local memory systems are
easier to scale to a large number of processors. Shared mem-
ory multiprocessors are usually coarse grained because the bus to
memory saturates and/or becomes prohibitively expensive above
a few processors. However, machines such as Evans and Suther-
lands’ ES-1 and MYRIAS are considered as shared memory mul-
tiprocessors and can be configured with several hundreds of pro-
cessors. Note also that on SIMD machines, one has to devise
special tricks to be able to process parallel finite elements of dif-
ferent types, since these do not involve the same instructions and
only one instruction can be executed at a time.



II1 FE COMPUTATIONS ON MIMD LOCAL MEM-
ORY MULTIPROCESSORS

Several solution algorithms have been designed for static, modal
and transient finite element analyses on MIMD local memory
multiprocessors. Examples of these can be found in Farhat and
Wilson [6] (Intel’s iPSC), Lyzenga, Raefsky and Hager [7] and
Nour-Omid, Raefsky and Lyzenga [8] (JPL/Caltech's MARK III).
Typically, these algorithms stem from the divide and conquer
paradigm.

Consider the finite element discretization of the mechanical
joint shown in figure 1. If the complete finite element system is
subdivided into NV, subdomains, each group of elements within a
subdomain can be processed in parallel. The data structure for
such an approach is very simple. On local memory multiproces-
sors, only the storage for the node geometry and element prop-
erties within the substructure need be stored within the RAM
(Random Access Memory) of the processor assigned to that sub-
domain. In addition. concurrent formation and reduction of the
mass, damping and stiffness matrices for that region require no
interprocessor communication. Message passing occurs only when
transfering solutions between subdomain interconnected bound-
aries. The latter phase often determines the efficiency of the par-
allel computational approach. While load balancing is an impor-
tant criterion for automatically subdividing a mesh into as many
submeshes as there are available processors, Ny = N,, it is not
sufficient by itself to determine the partitioning algorithm.

Fig. 1 Discretization of a mechanical joint

Suppose that a parallel explicit or explicit-like algorithm is
to be implemented on an MIMD local memory multiprocessor.
It could be, for example, an iterative solver for the linearized
static problem. or a time integration explicit algorithm for the
transient response analysis. Typically, these computations involve
matrix-vector products Ku and inner products uTu which can be
evaluated in paralle] as:

=N,
Ku = Kju,
)=1
=N,
T —_ T
u'u = u; uy
=1
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where I; denotes the stiffness of the j — th subdomain and u,
is the localization of the displacement vector to the J — th sub-
domain. In this case, only neighboring subdomains need to ex-
change boundary information. Hence, an optimal decomposition
is the one which minimizes the communication bandwidth of the
problem, — that is, the subdomain connectivity. This strategy is
discussed by Malone in [9]. When applied to the above problem,
for N, = 32, it delivers the partitioning shown in figures 2a-2b.
The average and maximum communication bandwidths are 5 and
8 respectively, and the number of interface nodes is 718.

Fig. 2a Decomposition with ¥, = 32
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Fig. 2b Interprocessor communication pattern

Suppose now that parallel implicit static or dynamic com-
putations are to be invoked. In this case, a higher level of par-
allelism is obtained by treating the interface nodes as a separate
entity, and numbering the unknowns so that, for example, the
stiffness matrix has the pattern shown in figure 3b. The subma-
trices I\';;, X'y and K,; denote respectively the subdomain and
interface stiffnesses, and the coupling term. Clearly, all subdo-
mains can be processed in parallel after the interface problem



J=N, =N, s
(Kir— 3 KREGKu = fr= 3 KRKGH, (2)
j=1 =1

has been solved. In equation (2), u; and f; are respectively
the generalized displacements and forces at the interface nodes.
The size of the interface problem determines the efficiency of this
parallel stratagem. An optimal decomposition for this approach
which minimizes the number of interface nodes is presented by
Farhat in {10]. When applied to the above mechanical joint (fig.
3a), for N, = 32, it delivers 356 interface nodes only.

Fig. 3a Decomposition: N, = 32 and interface mini-
mization
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Fig. 3b Pattern for stiffness matrix

Equation (2) can be solved using a direct method (Farhat,
Wilson and Powell [11]), or an iterative one (Farhat and Wil-
son [12], Nowr-Omid, Raefsky and Lyzenga [8]). Let n} denote
the average number of interface nodes per subdomain, and d the
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number of degrees of freedom per node. If the interface prob-
lem is treated with a direct solver, the formation of Schur's com-
plement K'jy - Z"— PN II\’-II\,I requires 2N,n}d solutions of
sparse triangular systems On the other hand, each conjugate
gradiem iteration involves N, matrix-vector products of the form
K I\"'K [ rul , , which require 2.V, solutions of sparse triangu-
la: systems If memory is an issue, the fill-in of (2) can be such
that an iterative solver, for example the preconditioned conju-
gate gradient method, is recommended for the solution of the
interface problem. If the coupling between subdomains is very
strong, a preconditioned conjugate gradient algorithm may re-
quire more than njd iterations to achieve convergence, so that a
direct method becomes more advantageous.

Parallel modal and transient analyses using both approaches
have been experimented on Intel's iPSC (Farhat and Wilson [13],
Malone [9]).

The reader should note that when using implicit compu-
tations, the substructuring technique introduces a high level of
parallelism, however sometimes at the cost of additional floating
point computations. On the other hand, parallel direct solvers do
not increase the computational complexity, but on local memory
multiprocessors, they may suffer from interprocessor communica-
tion costs. For this reason, and because the degree of parallelism
direct parallel solvers offer is limited by the mesh bandwidth,
the author does not recommend their use for the solution of the
entire finite element system on currently available local memory
multiprocessors, especially if the number of processors is large.
say Np > 128. However, they have been successfully combined
with the substructuring technique to solve the interface problem
only (see Farhat, Wilson and Powell [11]).

IV FE COMPUTATIONS ON MIMD SHARED MEM-
ORY MULTIPROCESSORS

In principle, parallel algorithms which are developed for local
memory multiprocessors can be used on shared memory machines.
However. a much higher performance can be achieved if the spe-
cial features of these machines are fully exploited. In particular, if
the multiprocessor offers a vector capability, the algorithms out-
lined in Section III must be revisited.

For explicit computations on a shared memory multiproces-
sor, the substructuring approach advocated in Section III may
be also utilized. Interface data may be either duplicated in the
shared memory, or treated as a Critical Section (see Benten.
Farhat and Jordan [15]), — that is, a portion of a code where
a processor needs to store into a memory location used concur-
rently by another processor. In the latter case, the processors
are serialized when processing the interface degrees of freedom.
For example, while in (1) the quantities J',u; and u;ru, can bhe
evaluated in parallel for all j, the assembly of the results at the
interface nodes is recursive and requires serialization. A more
efficient approach on shared memory machines is described by
Farhat and Crivelli in [16]. Explicit computations are parallelized
at the element level. Memory contention. and therefore Critical
Sections. are avoided by processing the elements in an order dic-
tated by a graph coloring algorithm [16]. Basically, the mesh is
partitioned into sets of internally disjoint elements, so that vec-
torization and parallelization are optimized. For example, when

——



applied to the problem shown in figure 1, the coloring scheme
creates 8 sets of internally disjoint elements. Figure 4 shows the
elements in set 3 for this example. Within a set of elements, ex-
plicit computations are performed asynchronously. Synchroniza-
tion points are required only between the processing of two differ-
ent sets of elements (8 synchronization points in this case).

Fig. 4 Internally disjointed elements in set #3

Contrary to popular belief, implicit computations are more
difficult to optimize on shared memory multiprocessors. To illus-
trate this fact, we consider the static solutions of the mechanical
Joint and of the Solid Rocket Booster (SRB) (fig. 5) problems, for
a prescribed loading. Moreover, we assume that .V, = 4 proces-
sors are available. The subdivision of both meshes into balanced
subdomains with a minimum number of interface nodes are de-
picted in figures 6a-6b.

-

Fig. 3 Solid rocket booster

The discretized mechanical joint contains 436 elements and
832 nodes. After node-renumbering, the average profile band-
width is 168. The optimized average profile bandwidth for each
subdomain is 93. Therefore, the parallel reduction of each sub-
domain benefits not only from a lesser number of equations to be
reduced, but also from a smaller bandwidth. For this problem, the
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computational savings due to a lower subdomain bandwidth offs.
the computational requirements of the interface problem (2). -
that the paralle] algorithm based on substructuring is faster, eve
in serial mode, than a global Choleski decomposition.

Fig. 6a Decomposition with ¥, = 4 and interface
minimization

Fig. 6b Decomposition with .V, = 4 and interface
minimization

The discretized SRB model has 10.453 elements, 9.206 nodes
and 54.870 degrees of freedom. The number of interface nodes
corresponding to its subdivision into 4 subdomains is 165. After
node-renumbering, the average profile bandwidth is 310. The op-
timized average profile bandwidth for the 4 subdomains is 365.
Clearly, for this problem, reducing the 4 subdomain stiffnesses
requires a little more floating point operations than reducing the
global stiffness. Consequently, all the manipulations involved in
the solution of the interface problem (2) are additional computa-
tions generated by the substructuring method. Fortunately, the
interface problem size is only about 2% of the size of the entire
problem, so that the parallel method is still feasible. However.
for this problem, and especially if vector processing is available,
a better performance is achieved with a parallel highly vector-
ized direct solver. Indeed, the effectiveness of the solution of the
interface problem (2) comes from sophisticated implementations



whose details cannot be described here. For example, the alge-
braic manipulations involved in the evaluation of the quantity

KL KK (3)
do not vectorize well if the sparse data structures and computa-
tional techniques described by George and Liu in (17}, and ad-
vocated by the author for local memory multiprocessors [11] are
used, unless special tricks are invoked. On the other hand, for
the SRB problem, a parallel direct global solver such as the par-
allel active column solver presented by Farhat and Wilson in [18],
or a parallel version of the highly vectorized variable band solver
described by Poole and Overman in [19] are very efficient on a
parallel/vector supercomputer (CRAY Y-MP, 8 processors). For
the SRB problem, this is especially true because the bandwidth
to number of processors ratio is 310/8 = 38.75.

Clearly, the above examples demonstrate that the optimal
efficiency of a parallel algorithm depends on the underlying hard-
ware architecture and on the topological characteristics of the
problem to be solved.

With the advent of hardware gather-scatter on most recent
vector supercomputers, significant progress has been made in im-
plementing sparse linear equation solvers on these machines (see
Lewis and Simon {20]). Recently, Aschceraft, Grimes, Lewis, Pey-
ton and Simon [21] have used the new algorithmic concept of
a supernodal sparse factorization for implementing a superfast
sparse linear solver on the CRAY X-MP. The key ideas behind
the high level of vectorization come from the graph theory model
of the sparse elimination process which can be found in the book
of George and Liu (17]. In [22], Simon, Vu, and Yang describe
a parallel implementation of the supernodal sparse code which
delivers a performance rate as high as 1.682 GIGAFLOPS. How-
ever, sparse solvers require a preliminary nodal re-ordering (i.e.
minimal degree ordering) and symbolic factorization which can
consume an important amount of CPU time. Therefore, they
are most effective in nonlinear problems or problems with several
right hand sides, where the preprocessing phase is done once.

Parallel /O developments for finite element simulations, and
performance measurements on shared memory multiprocessors
can be found in Farhat, Pramono and Felippa (14].

V FE COMPUTATIONS ON A MASSIVELY PARAL-
LEL PROCESSOR

The CONNECTION MACHINE is probably the only massively
parallel processor that is now commercially available. It consists
of two parts: a front end computer (VAX, SYMBOLICS, SUN),
and a 64K processor hypercube (65,536 single bit processors). The
front end computer provides instruction sequencing and program
development and has the ability to address any location in the
hypercube distributed memory. The hypercube system provides
number crunching power.

Recently, Farhat, Sobh and Park [23, 24} have investigated
massively parallel transient finite element explicit computations
on the CONNECTION MACHINE. Preliminary results can be
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found in [23] and more detailed information in [24]. In general,
it has been found that this highly parallel processor can outper-
form vector supercomputers on explicit computations, but not on
implicit ones. Several features distinguish the CONNECTION
MACHINE from earlier hypercubes. On the hardware side, we
note the impressive number crunching power and the fast parallel
1/0 capabilities. On the software side, we note the virtual proces-
sor concept, which is somehow the dual of the well-known virtual
memory concept. Mesh decomposition and processor-to-element
mapping are the two fundamental keys for efficient massively par-
allel finite element computations. A given finite element mesh is
partitioned into 16-element subdomains which correspond to the
16-processor chips of the CONNECTION MACHINE. This par-
titioning is carried out in a way that minimizes the number of
nodes at the interface between the subdomains. As a result, only
those processors which are mapped onto finite elements at the pe-
riphery of a subdomain communicate with processors packaged on
different chips. Moreover, this partitioning is such that the con-
nectivity bandwidth of the resulting subdomains is large enough
to allow an efficient use of the 12 interchip wires. The mapping
algorithm attempts at reducing the distance information has to
travel through the communication network. In essence, it searches
iteratively for an optimal mapping through a two-step minimiza-
tion of the communication costs associated with a candidate map-
ping (see Farhat [25]). We summarize herein the basic conclusions
reported in [23, 24]. The processor memory size of 64 Kbits pe-
nalizes high order elements. Three-dimensional and high order
elements induce longer communication times. Mesh irregularities
slow down the computation speed in many ways. The Data Vault
is very effective at reducing I/O time. The Frame Buffer is ideal
for real-time visualization. Finally, the virtual processor concept
outperforms the substructuring technique on the CONNECTION
MACHINE.

VI PERFORMANCE EXAMPLES

The speed-up and MFLOP rates reported in this section include
all phases of the finite element analyses. A pair of (+,*) is counted
as 2 flops.

To illustrate the surgeon approach to parallel/vector finite el-
ement computations, we report on the solution of three different
problems on three different multiprocessors. First, we consider a
modal analysis of the simplified space station model shown in fig-
ure 7. The finite element mesh comprises 384 nodes, 1264 beam
elements and 2304 degrees of freedom. Since this is rather a small
problem, we consider the use of an Intel iPSC with 16 processors
and 4 Mbytes of available memory. After node-renumbering, the
average profile bandwidth for this problem is 90. We select not to
use a global parallel direct solver to carry out implicit computa-
tions, because it would allow only 6 columns of the stiffness matrix
to be assigned to one processor, which would make interprocces-
sor communications dominate local computations. Therefore, we
select an approach based on the substructuring technique outlined
in Section III. The mesh is decomposed into 16 balanced subdo-
mains, each containing approximately 79 elements. The size of
the interface problem is 672 (112 nodes). Our parallel algorithm
for eigenvalue extraction and modal superposition on a hypercube



architecture is described in [13]. The number of extracted modes
is 200. The performance results for this analysis on the iPSC are
reported in table 1.
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Fig. 7 Space station structural model

Table 1 Modal analysis on a 16-processor iPSC

Space station structural model
2,304 d.o.f - 200 modes

Phase

Speed-up MFLOPS
Forming K and M 15 0.6
Factoring K 12 0.5
Generating Lanczos vectors 12 0.5
Extracting 200 frequencies 14 0.4
Computing 200 mode shapes 13 0.5

Next, we consider the transient response of a more detailed
space station model to perturbations induced by shuttle docking.
The finite element model for this analysis incorporates 7596 2-
node beam elements, 572 4-node shell elements, 24 3-node rigid el-
ements, 9802 nodes and 58,812 degrees of freedom (fig. 8). Given
the size of this problem, we select to run it on an 8K CONNEC-
TION MACHINE using the parallel central difference algorithm
[20]. Table 2 summarizes the measured performances for compu-
tations and I/OQ manipulations. The latter correspond to dumping
at each time step the computed displacements, velocities, accel-
erations, stresses and strains onto the front-end. The reported
performances are scaled to the full 64K processor configuration
(see [1] for justifications). For this problem, the Data Vault im-
proves I/O by a factor of 1307!
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Fig. 8 Detailed space station model

Table 2 Transient analysis on the Connection Machine

Detailed space station structural model
58,812 d.o.f - 2000 time integration steps

Phase CPU time MFLOPS
(using C*)

Mesh decomposition 3 secs -

Data loading in the CM2 41 secs -

Equation of Motion Solving 4500 secs 340

Computation time 2500 secs 665

Communication time 2000 secs -

I/0 through front end 18,300 secs -

I/O through data vault 14 secs -

Finally, we consider the static analysis of the SRB on a CRAY
Y-MP with 8 processors. Following the reasoning of Section IV,
we select to perform the factorization of the stiffness matrix us-
ing a global parallel direct algorithm. For this purpose, we have
developed a parallel/vector version of the highly vectorized direct
solver described in [19]. The measured performances for 1, 2 and
4 processors are tabulated below (table 3). No results are avail-
able for the case N, = 8 because the author could not arrange for
a dedicated time on the CRAY Y-MP

The SRB problem was also solved in [22] using the supernodal
sparse factorization. The corresponding results are displayed in
table 4. It is interesting to note that while the sparse factorization
is twice as fast as the variable band solver on a single CPU, both
algorithms become comparable on 4 CPUs. Note also that for
the SRB problem, it appears that the supernodal code does not
parallelize well.



Table 3 Static analysis on the CRAY Y-MP
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Number of processors CPU time Speed-up MFLOPS
1 39 secs 1 235
2 19.79 secs 1.97 464
4 10 secs 3.90 918
8 NA NA NA

Table 4 Static analysis on the CRAY Y-MP

SRB structural model - 54,870 d.o.f.
Supernodal Sparse Factorization

Number of processors CPU time Speed-up MFLOPS
1 20.21 secs 1 231.71
2 13.12 secs 1.54 355.79
4 9.53 secs 2.12 491.45
6 8.53 secs 2.37 548.90
8 8.12 secs 2.49 578.08
CONCLUSIONS

In summary, the choice of a parallel finite element algorithm
should be dictated by the multiprocessor to be used and the prob-
lem to be solved. On local memory MIMD (Multiple Instruction
Multiple Data) parallel processors, the substructuring technique
is recommended for both implicit and explicit computations. On
shared memory multiprocessors, the decision is more difficult. If
the bandwidth of the problem is small, say only 5 times the num-
ber of available processors, the substructuring technique is still
recommended, unless the bandwidth of each subdomain is not
lower than that of the global problem. Otherwise, a global parallel
solver is advocated. In the case where vector processing is avail-
able, special data structures and computational orderings must be
used in order to fully exploit the vectorization capabilities. The
analyst must realize that the potential speed-up due to intercon-
necting a few vector processors cannot compete with the speed-up
due to the vector capabilities of a single processor. Finally, mas-
sively parallel processors are just emerging. The CONNECTION
MACHINE can outperform vector supercomputers when explicit
computations are utilized.

While most portability problems on serial machines are due
to subtleties in compilers and high-level languages, parallel com-
puters will face the additional burden of algorithmic portability.
Currently, the only portable parallel code is the one which is
driven by an analyzer which takes for input the problem to be
solved and the multiprocessor to be used, and outputs the switch
for the right parallel algorithm to be invoked.

partial support by NSF under Grant 87-17773, and partial sup-
port by NASA Langley under Grant NAG1-756.
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TOWARDS PARALLEL I/O IN FINITE ELEMENT
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SUMMARY

[/O issues in finite element analysis on parallel processors are addressed. Viable solutions for both local and
shared memory multiprocessors are presented. The approach is simple but limited by currently available
hardwire and software systems. Implementation is carricd out ona CRAY-2system. Performance results are
reported.

1. INTRODUCTION

Several parallel processor projects have already resulted in commercial multiprocessors (iPSC,
AMETEK. NCUBE, Connection Machine, Encore Multimax, Sequent, ALLIANT FX/8, CRAY
X-MP. CRAY-2, ctc.). These machines cover a broad spectrum in terms of threc factors: (a)
granularity, ranging from 2 to 65,536 processors, (b) peak performance, from 0-9 to 20.000 Mflops
and (¢) cost, from $0-125 M to $10 M. Other projects are still under development worldwide (GF-
11, NYU/IBM, SUPRENUM, Myrias, ctc, sec Reference 1 for details). Some numerical
algorithms have been revised. and some completely redesigned, for implementation on these
multiprocessors.*

Solid mechanics and structural analysis are important major application areas for parallel
computing. This is reflected by the continuously increasing number of publications on this topic
over the last few years. An cxtensive list of references on finite clement computations and
supercomputing may be found in Reference 3. In these references various aspects of the subject.
such as parallel clement-by-clement procedures and lincar solvers have been investigated. and
implementation schemes have been proposed and assessed. However, no attempt has been made
to address. investigate and/or experiment on parallel 1/O.

Itis very well known that I;O manipulations can casily dominate the execution time of a finite
element code. Hence. speeding up these manipulations through paralicl processing should be of
primary concern. This paper attempts to achicve this goal. Section 2 summarizes the occurrence of
;O in finite clement computations. Section 3 reviews the basic features of parallel processors and
emphasizes their 1'O capabilities and limitations. In Section 4, two simple approaches for
handling parallel 'O on multiprocessors arc proposed. Scction § specializes our views to the
CRAY-2 supcrmulticomputer and reports on our ‘hands on’ experience with it. Remarks and
conclusions are offered in Section 6.

2 1O IN FINITE ELEMENT COMPUTATIONS

Realistic finite element modelling of real engincering systems involves the handling of very large
data spaces which can amount to several gigabytes of memory. To cope with this, many programs
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in the general area of solid mechanies and structural analysis use out-of-core data base
management systems. However, [, O traflic between the disk and the processor memory slows
down the computations significantly and increases even more significantly the overall cost of the
analysis.

In a typical finite clement analysis. nodal and element data are retrieved from a storage disk
before their processing, then stored back on the same storage disk after their processing has been
completed. Examples include the transfer of nodal point co-ordinates, clemental mass and stiffness
matrices in element-by-element computational procedures, and of history responsc arrays in time-
stepping algorithms for lincar and non-lincar dynamics. Other examples include the movement,
into core and out of core, of blocks of an assembled stiffness or mass matrix in original or factored
form. and the output on disk of the final results of an analysis. Table [ is borrowed from Reference
4. It summarizes the comparative elapsed times for CPU and [;O on a Vax 11/780 of an analysis of
a cylindrical tube with a viscoplastic behaviour. The frontal method,® which is known to be 1/O
bound, was uscd for the solution phase. Data transfers were carried out through Fortran 1/O.

Clearly, the performance results reported in Table | underline the potential of I/O for
bottlenccks in finite element computations. Speeding up all the computational phases through
parallel processing is certainly an important issuc. However, reducing the amount of time spent in
data transfers can become even more of an issuc.

3. ARCHITECTURE AND HARDWARE

Recently, several parallel computers have arrived on the scene with a variety of different
architectures. These gencrally can be described through three cssential clements, namely,
granulanty, topology and control:

o Granularity rclates to the number of processors and involves the size of these processors. A
finc-grain multiprocessor features a large number of usually very small and simple pro-
cessors. The Connection Machine (65,536 processors) is such a mussi\'cl.y parallel supcr-
computer. NCUBLE's 1024-node model is a comparatively medium-grain machine. On the
other hand, a coarse-grain supcrmultiprocessor is typically built by interconnecting a small
number of large, powerful processors—usually vector processors. CRAY X-MP (4 pro-
cessors), CRAY-2 (4 processors) and ETA-10 (8 processors) are examples of such super-
multiprocessors.

e Topology refers to the pattern in which the processors are connected and reflects how data
will low. Currently avaikible designs include hypercube arrangements, networks of busscs
and banyan nctworks.

o Finally, control describes the way the work is divided up and synchronized.

Table I. Comparison of CPU and 1'O costs for an FF analysis on a Vax

11/780
Phise CPU (see) [0 (sce)
Integration of constitutive eguations 18-28 41-00
Assembly of externai forees N-03 0-00
Assembly of viscoplasttc lorees 1390 100-00
Solution 235 36:00
Owerall ENE R 17700
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Another important architectural distinction, and one that is most relevant to our effort in this
paper, is that which characterizes memory organization. In shared memory systems, all processors
access the same (global) large memory system. These multiprocessors are usually coarse-grained
because the bus to memory saturates and/or becomes prohibitively expensive above a few
processors. On the other hand, in local memory systems cach processor can access only its own
(local) memory. Independent processors communicate by sending each other messages. It appears
that parallel computers in this class are casier to scale to a large number of processors.

Distinguishing only between shared and local memory systems does not give a complete picture
of the problems that one may face when programming parallel processors. Granularity and
control also have their influence. The Connection Machine (65,536 processors) and Intel's
hypercube iPSC (128 processors) are both local memory systems. However, the former isan SIMD
(single instruction multiple data streams) machine where a single program executes on the front
end and its parallel instructions are submitted to the processors. The latter is an MIMD (multiple
instruction multiple data streams) parallel processor where separate program copies execute on
separate processors. The granularity of a parallel processor, which seems to affect other
architectural clements, substantially affects the computational strategy and parallel 1/0, as will be
shown.

Multiprocessors with any of the above architectures have the capability to substantially speed
up operations in scientific applications. However, 1/0 is still their Achilles heel. Before discussing
parallel /O strategies and their implementations, we mention that, at the time of writing this
paper and to our best knowledge, only a few systems offer parallel [/O capabilities. These include
NCUBE at one extreme, with up to 1024 processors and their small local memories, and CRAY-2
at the other, with four vector processors and a large shared memory. Parallel disk 1/0O capabilitics
are also available on the Connection Machine.

On NCUBE, cach node (processor) has a direet connection to an 1/O board through onc of the
system [0 channels, so that parallel disk access is possible. Generally speaking, on local memory
multiprocessors a bundle of processors may be assigned a local disk through a dedicated /O
channel.

On CRAY-2. multitasking [/O is possible on a limited basis.® Different tasks can perform [/O
simultancously on different files. This is primarily for the following two reasons.

I The non-deterministic nature of task execution limits 1/O on the same file by different tasks.
In other words, problems may arise not only from mapping two distinct hardware processors
on to the same file, but also from mapping two logical processes on to the same file. Our
experience has shown that the latter situation complicates even sequential I/O on most
shared memory multiprocessors (ALLI-ANT FX/8, Encore Multimax, Sequent Balance),
mainly because of the problem of maintaining consistency in the buffer sizes between distinct
processes.

2. The fact that parts of the support library are critical regions that are protected from
simultancous access, and therefore limit the parallelism that onc could otherwise exploit.

The next section presents two simple approaches for parallel disk [/O thatare viable within the
limitations of the currently available hardware and system software for local memory and shared

memory multiprocessors.

4, TWO SIMPLE APPROACHES

Most of the computational strategies recently proposed for parallel finite clement computations
arc based on the principle of divide and conquer: that is. divide the computing task into a number of
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subtasks that are either independent or only loosely coupled, so that computations can be made
on distinct processors with little communication and sharing. For example, if using this strategy
the structure shown in Figure | is to be analysed using N, processors, it is first automatically
subdivided into a set of N, (or a multiple of N,) balanced substructures.’

Dcpending on the size of the problem and the granularity of the parallel processor, a
substructure would contain anywhere from a single element to several thousand of them. Then,
each processor is assigned the task of analysing one—or several—substructure(s). While this
approach is feasible on most parallel computers, it is especially interesting for local memory
multiprocessors. Each processor is attributed a simple data structure. Only the node geometry and
element properties associated with its assigned substructure are stored within its RAM. In
addition, formation and reduction of the stifiness matrix for that region require no interprocessor

communication. Finally, after the displacements have been found, the postprocessing of sub-
domain stresses can be done concurrently.®

Local memory approach

[t is very natural to extend this substructuring idea to achieve parallel I/O in the finite element
analysis. For example, on local memory multiprocessors, it is tempting (o imagine that, in the
same way that a processor is assigned its own memory, it could be attributed its own set of /O
devices (1/O controller, disk drive, etc.) and its own files. Then, each processor would read/write
the data for its subdomain from its own files and through its own data base, in parallel with the
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Figure 1. Dividing and conquering a mesh
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other processors. If assigning an I/O controller and/or a disk drive to each processor is impractical
and/or impossible, as is probably the case for a fine-grain system, for a cluster of processors it is
possible. For concreteness, we overview NCUBE's 1/O subsystem for a configuration with 1024
processors (Figure 2).

The 1024 computational nodes can be thought of as eight groups of 128 processors each. Each
group consists of 16 clusters of eight directly connected computational nodes. (Recall that where 2
processors are arranged in a hypercube pattern, d of them are dircctly conncected.) Within a cluster,
cach computational node has 22 dircet memory access (DMA) channcels. Twenty of these are
paired into 10 bi-directional communication links and arc uscd for messages (data transfer) to and
from direct neighbours. The remaining pair of channels is bundled together with the 127 other
pairs of the same group and brought through the backplane to one of the I/O slots. This results in
what is called a system I/O channel. Clearly, an NCUBE system with 1024 computational nodes
has 8 system 1/O channels. Next, an 1/O board is interfaced to a backplane to serve the 128
processors organized into 16 clusters of 8 directly connected computational nodes. Another cube
with 16 nodes is connected to the other side of the I/O board. Each of these nodes has direct access
to a disk through a private controller. Hence, cach of these 16 nodes cun dircctly serve one of the 16
clusters of computational nodes. In other words, each computational node within a cluster of cight
directly connected processors has a direct access to a disk through a dedicated node connected to
the other side of an IO board. In summary, the 1/O subsystem outlined above supports 1024
processors with 8 system I/O channels, 128 controllers and 128 disks. It has the potential for a
minimum 1/O speed-up of 128.

In the following. the words ‘host” and ‘DBM’ denote respectively the collection of processors
serving an 1/0 board and a generic scquential data basc manager. After a given finite element

=

5‘31EM -0

Figurc 2. NCUBE's IO subsystem
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domain is decomposed, it is grouped into regions R, i=1,..., 128, each containing eight
(preferably adjacent) subdomains D}, j=1, . .., 8. A host processor p! is uniquely mapped onto
each region R;. [tis assigned the task of handling /O manipulations associated with computations
performed primarily in the eight subdomains within R,. Basically, since p? is directly connected
from one side to each of the eight processors p; assigned to subdomains D%, and from the other to
its dedicated disk, it can directly transfer data from p/’s RAM, j=1, ..., 8, to the disk and vice
versa. This is implemented as follows. Each host processor p! is loaded with the same program
driver, which we will call the listener, and the same copy of DBM. The main task of the listener is to
listen to processor p;'s requests for 1/O, j=1, ... 8. These requests may be:

e receive data from p; and store it in disk using DBM;

e retricve data from disk through DBM and send it to p;;

e rctricve data from disk through DBM, send it to anothcr host processor p! together with the
instruction of broadcasting it to a specified number of computational nodes that are directly
connected to p}: this particular operation implements potential exchange of data between
subdomains.

Consequently, only a small amount of RAM is required on a host processor. It corresponds to the
storage requirements of an executable listener with its buffer for data transfer and of an executable
code of a DBM system. Note that the size of a message is not limited by the amount of buffer
memory available on the host processor but by the amount of memory allocated by the operating
system for a message passing operation. Hence, a large record of data may need to be split and
transferred via more than one message.

On most local memory multiprocessors, a node sends a message to another node (or set of
nodes) by typically executing a ‘send’ system call with the following parameters: (a) a set of
destination nodes, (b) a process id, (c) a message type, (d) a buffered message or a pointer to the
message buffer and (e) the length of the message (usually in bytes). Similarly, a node initiates the
receipt of a message from another process by issuing a ‘receive’ system call with parameters
corresponding to the ‘send’ call. In many cases, ‘send’ and ‘receive’ cannot be coordinated. This is
the case, for example, when a host processor does not have a priori the schedule of the messages
that computational nodes will issue during the finite clement analysis. In such situations, a host
processor can ‘probe’ for all pending messages of a specific type and act when a message of a given
type is available for reception. A computational node program transmits its instructions and data
to the listener via a message buffer denoted here by BUFFER, and formatted as indicated below:

KEY | KEY 2 KEY 3 INSTRUCTION TAGGED DATA

TAG DATA

Example:

[4 | 23 } 4 ] STORE IN FILE ‘STIFF

BUFFER[1] points to the location in BUFFER of the instruction stream to be processed
then delivered to DBM.

BUFFER([2] points to the location in BUFFER of the data stream to be processed then
delivered to DBM.

BUFFER[3] contains the number of continuing messages.
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On most local memory multiprocessors, messages issucd by a node to a same other processor
are received in the same order that they are sent. Hence, if computational node p§ sends to a host
processor p! an instruction and/or data message followed by two other messages containing the
remaining of the data, p? receives first the instruction tailed with the first part of the data, then the
rest of the data. However, problems may occur if two different computational nodes pj; and p; each
send a set of continued messages to the same host processor pf’. In this case, the host processor
might receive the messages in disorder. To climinate ambiguity, the logic of the listener is
implemented as following:

e it receives a first message. identifies its type and the number of continuation messages:

e it probes for pending continuation messages of the same type, receives and processes them
(pending messages of a diflerent type are queucd by the operating system);

e it listens to another starting message.

Next. we describe another approach. this one for multiprocessors with shared memory.

Shared memory approach

It is possible to simulate a local memory multiprocessor with a shiarcd memory one, by
partitioning the global memory into locations cach fetched always by the same processor.
Consequently, the approach presented above for parallel 1:O on local memory multiprocessors
identically applies to shared memory machines. However, we see three reasons for adopting a
different approach on shared memory parallel processors.

1. Mimicking a local memory system on a shared memory one defeats the purpose of sharing
information.

2. Asdescribed previously, the local memory approach ties a given processor indefinitely to the
1/0 needs of a specific region of the finite element domain. We refer to this as a static
mapping of a processor onto a subdomain. A key issue in performance of parallel processing
is load balancing. When the amount of work (computations + 1;0) to be performed can be
predicted for each region of a mesh, it can be cvenly distributed among the processors
through a careful partitioning of the geometrical domain and an adequate mapping of the
processors onto the resulting subdomains. When such predictions are not possible, a
dynamical load balancing algorithm is necessary for optimal performance on parallel
processors. Local mesh refinements in adaptive computations and local material properties
changes in elastoplastic analyses arc examples of situations where the mapping of a processor
onto a subdomain needs to be re-defined at cach computational step. Note that on local
memory multiprocessors re-mapping of the processors on the finite element domain implies
a substantial amount of data transfer between the processors, and what is gained with the
even redistribution of computations and [/O is lost with interprocessor communications. On
the other hand, the dynamical re-mapping of the processors of a shared memory system for
complex finite element computations can be achieved at almost zero overhead cost.’

3 Because of the ability of a processor to reference any location in the global memory, shared
memory multiprocessors provide the programer with a wider variety of parallel strategies
than do local memory systems. One ought to take advantage of this fact. It will be shown that
our approach for parallel I/O in finite element computations on shared memory multi-
processors embeds our approach on local memory machines as a particular case.

Unlike the previous approach, a single executable version of a sequential DBM is stored in the
global memory of the multiprocessor. Moreover, there is no need for a listener since all processors
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can directly access DBM, the [/O library and the disks. However, the core of the computational
routines needs to be slightly modified to distinguish between global variables, which are shared by
all the defined processes, and local variables, which have a single name to ease programming but a
distinct value for each process. Using parallel constructs such as those of The Force'? reduces the
nature and amount of modifications to one: that of preceding each Fortran declaration of a
variable by either the word SHARED or the word PRIVATE. While our approach for parallel [;O
on local memory machines is subdomain oriented. it is purely data oriented on shared memory
multiprocessors. In the following, we distinguish between four classes of paraliel 1/O requests.

1o Synchronous request with pricate variables {SRPV J. All processes request 1/0 operations
simultancously, each with a private buffer arca. Typically, this happens in an SIMD programming
style. even when the multiprocessor is of the MIMD type. For example, suppose that all of the
processes have to perform the same amount of identical computations but on distinct sets of data,
and suppose that these computations are such that out-of-core temporary storage associated with
each set of data is needed. Here, identity in the instructions calls for synchronous parallel 1/0, and
independence in the data sets calls for private temporary storage.

2. Synchronous request with shared variables {SRSV ]. All processes request 1/O operations
simultaneously using a common buffer area. For example, consider the previous case with the
additional assumption that the nature of the computations requires shuffling of the temporary
data between processes.

3. Asynchronous request with private variables {ARPV ], A process requests 1/O operations
independently of another process and with a private buffer arca. These requests are identical to
those on MIMD local memory multiprocessors. For example, the entire approach described
carlier for local memory multiprocessors fits into this class of I/O requests.

4. Asynchronous request with shared variables {ARSV |. A process requests 1/O operations
independently of another process using a shared buffer area.

Clearly, the four classes of 1/O request described above cover all the possibilities on a shared
memory multiprocessor. At this point we introduce the following remarks.

1. Synchronous and asynchronous refer to the initiation of the processes and not to their
execution. Two processes can be initiated at the same time but executed at two different
times, for example, if one processor were tied up by a previous process.

2. [ARSV]requires that a pointer to the location in the buffer of the starting address for storage
and/or retrieval of data be carefully computed by its owner process, in order not to destroy
the information by overlapping the data.

3. The multiprocessor will take no responsibility for automatically generating synchronization.
It is entirely the responsibility of the user to make sure that the shared data to be created by
one process and to be read by another process are available before an [ARSV] is issued.
Typically, one invokes an explicit synchronization instruction for that purpose.

Next, we describe a simple parallel I/O manager, PIOM, which copes with our four defined 1/0
requests. First, note that PIOM can handle [ARPV] and [ARSV] exactly as in the sequential case.
Hence, [SRPV] and [SRSV] are the requests which call for a modification of a basic scquential
1/O manager. Morcover, after PIOM recognizes that [SRPV] deals with private variables, it can
treat it exactly as [ARPV], with the difference that calling processes are responded to in parallel.
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In other words, [SRPV] is treated as a set of simultancous [ARPV]. Conscquently, the treatment
of [SRSM] is PIOM’s major task.

For cach file related to an [SRSV]. PIOM consults an 1;0O table. If the request is for storing
data, PIOM’s logic is as follows:

(S1) it partitions the information into a number of contiguous subsets equal to the number of
calling processes, each subset containing an equal amount of data.

(S2) for each subset, it computes a pointer to the location in the shared buffer where the subsct
data stream begins.

(S3) for each calling process, it creates a corresponding 'S’ 1/O process. Each *S” [/O process is
assigned a subset of the data with its pointer.

(S4) it reports in the 1/0 table the total number of created ‘S" 1/O processes. For ecach 'S O
process, it specifies the length of its assigned data and their destination on a hardware
device.

(SS) it fires the *S’ 1;O processes. Each "S™ 1O process re-partitions its assigned data into a
number of records that is a multiple of the total number of available processors on the
machine. then calls DBM independently of another *S' 17O process. The reason for the
internal partitioning will become clearer in the remarks which follow.

On the other hand, if the request is for retrieving data, PIOM's jogic becomes:

(R1) it retricves the 1O table corresponding to the file. If the number of calling processes is
cqual to the number of processes registered in the table (the *S" processes which originally
stored the file), the inverse logic to the 'store” case is followed and the data are retrieved in
parallel. If not:

(R2) for each registered 'S’ 1O process. it partitions its subset of information into a number of
contiguous blocks of data equal to the number of calling processes. cach block containing
an equal amount of data.

(R3) for cach block, it computes a pointer to the location in the shared bulfer where the block
data strcam begins.

(R4) for cach registered 'S” 1;O process. it creates a number of "R* 1/0 processes equal to the
number of calling processes. Each "R* 1O process is assigned a block of the subset data
with its pointer.

(R35) it fires the 'R™ 1/O processcs.

{R6} it follows with the next ‘S’ process 1o be retrieved.

Clearly. step (S5) and steps (R2) to (R6) allow for a file that was written in parallel using p
processes to be recad in parallel using p* processes, where p* is diffcrent from p. In this case, the
retrieval of the file is carried out in p waves, each of a degree of parallelism equal to p*. The overall
logic is summarized in Figure 3.

In order to illustrate the flexibility of this approach, we describe two simple examples. Example
| illustrates the distinction between the mapping of the processors on the data during 1O and
during computations. Example 2 illustrates the ability of the approach to handic dynamical load

balancing algorithms.

Example 1. A block of the stiffness matrix is 1o be retrieved from disk and factored using four
processors. An [SRSV] is issued to read the block of the stiffness matrix. The partitioning of the
data by PIOM into contiguous subscts is shown in Figure 4(a). After the entire data are retrieved
in parallel, the processors arc mapped onto the stiffness matrix block in an interlcaved fashion
(Figure 4(b)). Next a call for a parallel active column solver'! is issued.
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Figure 3. A parallel 1/O manager

Figure 4{a). Mapping for data retrieval Figure 4(b). Mapping for computations

Example 2. During colourcd clement-by-element computations,” NEB elemental stiffness
matrices have to be read from disk and processed for computation of residuals. Here again, an
[SRSV]is issued for parallel retrieval of the data. The mapping of N, processors on the elemental
stiffnesses is initially prescribed only for the first N, elements of NEB. After that, the elements are
processed as soon as a processor becomes available. Hence, the question of which element turns
out to be non-linear and which turns out to remain linear does not affect the load balancing.
Moreover, another [SRSV] for another set of NEB elements to be read in parallel can be issued as
soon as a processor is done with its computations and while all the others are still tied up with the
last N —1 elements to be processed.

5. IMPLEMENTATION ON THE CRAY-2

The CRAY-2 supermultiprocessor is characterized by a global memory of 256 million 64-bit
words, four background processors and a clock cycle of 4-1 nanoseconds. It is the target machine
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for our first experiments with parallel 1/0. The four background processors can operate
independently on separate jobs or concurrently on a single problem (CRAY Research Inc. refers to
this as multitasking). Each processor can independently coordinate the data flow between the
system common memory and all the external devices across four high-speed 1/O channels.

As stated in Section 3, multitasking I/O is possible on CRAY-2 with the restriction that different
processes can simultaneously perform I/O only on separate files that are located on different disks.
The shared memory approach presented in Section 4 is slightly modified to accommodate
CRAY-2's limitations. Any file specified by the user is automatically partitioned by PIOM into a
number of ‘sub-files’ equal to the number of I/O processes. The partitioning and the sub-files
names are transparent to the user. They are recorded in the I/O table for further 1/O processing.
Three algorithms—chunking, interleaving and interleaving with buffering—are considered for
mapping the data onto the sub-files.

The blocking algorithm is a straightforward implementation of steps (S1) and (S2) described in
Section 4. The data to be transferred are partitioned into a number of subscts of contiguous data
equal either to the number of available disks, or to the number of calling processes, whichever is
smaller. This algorithm is very fast, but has two main drawbacks:

e it may not utilize all the available processors for some 1/O recad requests. For example,
consider the case where the information to be read corresponds to data that were previously
written by PIOM on the same physical disk.

e appending to an existing file may not be efficient.

The reader should note that the words ‘a file’ refer to what is in the user's mind. PIOM always
splits ‘the’ file into as many sub-files as there are available disks. Appending an existing file, and
reading from an arbitrary location in a file, are two operations which are better handled by the
interleaving algorithm. Basically, if N4 denotes the number of available disks, and D denotes the
data stream to be processed, this algorithm partitions D into a sct of segments S, of arbitrary sizes,
and assigns cach segment §; to disk mod (i, N) (Figure 5).

The interleaving algorithm above requires the 1/O manager to be invoked a number of times;
that number is equal to the ratio of the number of scgments divided by the number of disks, N.
Each time the IO manager is invoked, it conveys the information segment directly from main
memory to auxiliary storage or vice versa. Another approach consists of first buffering the
segments of a given parallel 1/0 process in an order that reflects their layout in their assigned disk.
then invoking only once the 1/O manager to cxecute the paralicl 1/O request.

[11213]4151617181911011'[‘L|

MAIN STORAGE

O T4aT7 1wl DISK 1
DISK 2
3 T 1 o oz T DISK 3

Figure 5. Interleaving data on disks
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The practical implementation of the three algorithms described above is carried out with The
Force,'® a preprocessor which provides a FORTRAN style parallel programming language
utilizing a set of parallel constructs. [ARPV] and [ARSV] are implemented with regular CALL
statements to PIOM: each process executes independently of the other its call to a subroutine,
delivering a different data buffer. [SRPV] and [SRSV] are implemented with the FORCECALL
executable statement to PIOM: this construct causes the entire processes to jump and execute
parallel calls to PIOM. In the latter case, the processes’ ids are automatically passed to PIOM.
Performance results for the three algorithms are reported in Tables 1, 11T and IV. Tables 11 and HI
arc associated with a segment size equal respectively to 1 sector (1024 bytes) and 1 track (65536
bytes). They compare the performance of the three algorithms for a parallel read request consisting
of retrieving a 24 Mbytes data stream using 2 CPU's. Wall-clock, system time and user time are
reported. System time corresponds to the time clapsed in PIOM managing parallelism. User time
1s associated with 1/0 overhead.

Table II. Performance results

Parallel read—Information size =24 Mb—Segment size=1 sector

Clock System User

(sec) {sec) (sec)
Chunking 1-222 7777E-5  3482E-2
Interleaving (buffering) 4-885 2:0565 2922E-2
Interleaving 6-604 0-5916 2:523

Table 111. Performance results

Parallel read--Information size =24 Mb--Segment size = | track

Clock System User

(sec) (sec) (sec)
Chunking ' 1-222 7777E-5  3482E-2
Interleaving (buffering) 4120 1-965 39I7E-2
Interlcaving 1-159 9-30E-3 T-643E -2

Table 1V. Speed-up

Chunking algorithm—Information size =200 Mb

I Process 2 Processes 3 Processes

(sec) {sec) (sec)
Write 21-603 12:208 10-036
Speed-up 1-0 1-77 215
Read 1-165 0-584 0-390

Speed-up 1.0 1-99 299
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For a segment size equal to | sector, the chunking algorithm is by far the fastest. For this
example. the number of segments to be processed, which is given by the ratio information
§ize, segment size. is such that the interleaving algorithm has a high overhead associated with I/O
instructions. and the interlcaving with buffering algorithm has a high overhead associated with
PIOM’s instructions. :

However. for i segment size cqual to | track, the interleaving algorithm performs best. This 1s
because for the given segment size, fewer segments need to be processed and less time is elapsed in
I'O instructions.

The above results provide the user with a guidance for the sclection of any of the three
implemented parallel algorithms.

Table 1V reports the wall-clock time and measured speed-up for parallel read/write requests
using the chunking algorithm. Only three out of the four available CRAY-2 CPU's were activated
because only three different disks were available. For each case. the size of the data stream to be
processed was fixed to 200 Mbytes.

Clearly, very high speed-ups are achieved for both read/write parallel requests. Note, however,
the pathological performance for the write case with three processors. We have not yet been able
to justify this particular result.

6. CONCLUSION

Finite clement analyses are known to be [,0 bounded. In this paper, two approaches are presented
to speed 170 manipulations through parallel processing. The first approach deals with local
memory MIMD multiprocessors and is based on a substructuring technique. The sccond
approach is dedicated to shared memory multiprocessors. It has been implemented and tested on
a CRAY-2 system with four CPU’s. The obtained performance results confirm the potential of
parallel processing in I/O manipulations. Future work will address 1/O operations on the data

vaults of the Connection Machine (65,536 processors).

ACKNOWLEDGEMENT

The first author wishes to acknowledge the partial support of a CDC PACER Fellowship Award,
with Dr R. F. Woodruff as technical monitor. The second and third authors acknowledge partial
support by NASA Langley under Grant NAG-1-756, with Drs J. Housner and J. Stroud as

technical monitors.

REFERENCES

1. O. A. McBryan, ‘State of the art in highly parallel computer systems’, in A, K. Noor (ed.}, Parallel Computations and
Their Impact on Mechanics, American Society of Mechanical Engineers, New York, 1987.

2. J. M. Ortega and R. G. Voigt, ‘A bibliography on parallel and vector numerical algorithms', NASA CR-178335. 1987

3. D. W. White and J. F. Abel, 'Bibliography on finite elements and supercomputing, Commun. Appl. Numer. Methods. 4,
279-294 (1988).

4. J-C. Golinval, ‘Calcul de la response d'une structure ¢n viscopl

Laboratory. University of Licge, 1985.

B. Irons, ‘A frontal solution program for finitc clement analysis', Int. j. numer. me

CRAY-2 Multitasking Programmer’s Manual—-SN-2026.
C. Farhat. ‘A simplc and efficient automatic FEM domain decomposer’, Comp. Struct., 28, 579-602 (1988).

C. Farhat and E. Wilson, ‘A new finite element concurrent computer program architecture’, Int. j. numer. methods eng.,

24, 1771-1792 (1987).

9. C. Farhat and L. Crivelli, 'A general approach to nonlincar FE computations on shared memory multiprocessors’,
Comp. Methods Appl. Mech. Eng., 72, 153- 171 (1989).

10. H. Jordan, M. Benten and N. Arenstorf, Force User's Manual, Department of Electrical and Computer Engincering,

University of Colorado, Boulder, Colorado.
11. C. Farhat and E. Wilson, ‘A parallel active column equation solver’, Comp. Struct.,

asticite cyclique’. Rupport SF-133, Acrospace Research

thods eng., 2, 5-32 (1970).

0 o

28, 289-304 (1988).






A METHOD OF FINITE ELEMENT
TEARING AND INTERCONNECTING
AND ITS PARALLEL SOLUTION ALGORITHM

Charbel Farhat
Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls

University of Colorado at Boulder
Boulder, CO 80309-0429, U. S. A.

and

Francois-Xavier Roux
O. N. E. R. A. Groupe Calcul Parallele
29 Av. de la Division Leclerc
BP72 92322 CHATILLON Cedex, FRANCE

Abstract. A novel domain decomposition approach for the parallel finite
element solution of equilibrium equations is presented. The spatial domain is
partitioned into a set of totally disconnected subdomains, each assigned to an
individual processor. Lagrange multipliers are introduced to enforce compatibil-
ity at the interface nodes. In the static case, each floating subdomain induces a
local singularity that is resolved in two phases. First, the rigid body modes are
eliminated in parallel from each local problem and a direct scheme is applied con-
currently to all subdomains in order to recover each partial local solution. Next,
the contributions of these modes are related to the Lagrange multipliers through
an orthogonality condition. A parallel conjugate projected gradient algorithm is
developed for the solution of the coupled system of local rigid modes components
and Lagrange multipliers, which completes the solution of the problem. When
implemented on local memory multiprocessors, this proposed method of tearing
and interconnecting requires less interprocessor communications than the classi-
cal method of substructuring. It is also suitable for parallel/vector computers
with shared memory. Moreover, unlike parallel direct solvers, it exhibits a degree
of parallelism that is not limited by the bandwidth of the finite element system
of equations. '



1. Introduction

A number of methods based on domain decomposition procedures have been
proposed in recent years for the parallel solution of both static and dynamic
finite element equations of equilibrium. Most of these methods are derived from
the popular substructuring technique. Typically, the finite element domain is
decomposed into a set of subdomains and each of these is assigned to an individual
processor. The solution of the local problems is trivially parallelized and usually
a direct method is preferred for this purpose. Parallel implementations of both a
direct (Farhat, Wilson [1]) and an iterative (Nour-Omid, Raefsky and Lyzenga [2])
solution of the resulting interface problem have been reported in the literature.
A number of more original approaches have also been spurred by the advent of
new parallel processors. Ortiz and Nour-Omid [3] have developed a family of
unconditionally stable concurrent procedures for transient finite element analysis
and Farhat [4] has designed a multigrid-like algorithm for the massively parallel
finite element solution of static problems. Both of these developments relate to
the divide and conquer paradigm but depart from classical substructuring.

In this paper, we present a paralle] finite element computational method for
the solution of static problems that is also a departure from the classical method
of substructures. The unique feature about the proposed procedure is that it
requires fewer interprocessor communication than traditional domain decompo-
sition algorithms, while it still offers the same amount of parallelism. Roux (5,
6] has presented an early version of this work that is limited to a very special
class of problems where a finite element domain can be partitioned into a set
of disconnected but non-floating subdomains. Here, we generalize the method
for arbitrary finite element problems and arbitrary mesh partitions. We denote
the resulting computational strategy by “finite element tearing and interconnect-
ing” because of its resemblance with the very early work of Kron [7] on tearing
methods for electric circuit models. In Section 2, we partition the finite element
domain into a set of totally disconnected subdomains and derive a computational
strategy from a hybrid variational principle where the inter-subdomain continuity
constraint is removed by the introduction of a Lagrange multiplier. An arbitrary
mesh partition typically contains a set of floating subdomains which induce local
singularities. The handling of these singularities is treated in Section 3. First,
the rigid body modes are eliminated in parallel from each local problem and a
direct scheme is applied concurrently to all subdomains in order to recover each
partial local solution. Next, the contributions of these modes are related to the
Lagrange multipliers through an orthogonality condition. A parallel conjugate
projected gradient algorithm is developed in Section 4 for the solution of the
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coupled system of local rigid modes components and Lagrange multipliers, which
completes the solution of the problem. Section 5 deals with the preconditioning of
the interface problem in order to speed up the recovery of the Lagrange multipli-
ers. Section 6 emphasizes the parallel characteristics of the proposed method and
Section 7 contrasts it with the method of substructures. Section 8 discusses some
important issues related to the partitioning of a given finite element mesh. Fi-
nally Section 9 illustrates the method with structural examples on the distributed
memory hypercube iPSC (32 processors) and the shared memory parallel/vector
CRAY-2 system (4 processors), and Section 10 concludes the paper.

2. Finite element tearing and interconnecting

Here we present a domain decomposition based algorithm associated with a hy-
brid formulation for the parallel finite element solution of the linear elastostatic
problem. However, the method is equally applicable to the finite element solu-
tion of any self-adjoint elliptic partial differential equation. For the sake of clarity,
we consider first the case of two subdomains, then generalize the method for an
arbitrary number of subdomains.

The variational form of the three-dimensional boundary-value problem to be
solved goes as follows. Given f and h, find the displacement function u which is
a stationary point of the energy functional:

I() = za(v,0) = (,7) = (v, B)r

where
a(v,w) = Lv(i,j)cijklw(k,l) dQ (1)
©.f) = [ wfido

(’U,h)p = / ‘U,'h,'dr
T'a

In the above, the indices i, j, k take the value 1 to 3, v(; ;) = (vij + vj,i)/2 and
v;,; denotes the partial derivative of the ¢ — th component of v with respect to
the j — th spatial variable, c;;5; are the elastic coefficients, {2 denotes the volume
of the elastostatic body, I its piecewise smooth boundary, and 'y the piece of T
where the tractions h; are prescribed.
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If Q is subdivided into two regions Q; and Q; (fig. 1), solving the above
elastostatic problem is equivalent to finding the two displacements functions u,
and u, which are stationary points of the energy functionals:

Jl('v1) = _;'a(vla vl)fh "(vlaf)ﬂl - (vl’h)rx
Ta(vs) = a(vz,02)0 = (93, Fas = (o2, ),

where

a(vy,wy)a, = / V1(i, ;) Cij kW1 (k1) S
b3
0(02,w2)92‘= / V2(4,5)CijkiW2 (k1) df (2)
Q2
(3. Pay = [ vasfi a0
(19
(v2.f)ay = [ vuifi 0
Q2
(v1, h)r, =/ vy;hi dT
Th,

(v2, B)r, / vg;hi dl
| VY

and which satisfy on the interface boundary I'; the continuity constraint:

u; = ug only (3)

4



FIG. 1 Decomposition in two subdomains

Solving the two above variational problems :2) with the subsidiary continuity
condition (3) is equivalent to finding the saddlc point of the Lagrangian:

J*(v1,v2, 1) = Ji(v1) + Ja(2y) + (v1 — v2, )1y

where (4)
P g
'y

— that is, finding the two displacement fields u; and u; and the Lagrange mul-
tiplier A which satisfy:

J*(u1, uz, p) < J*(uy,uz,A) £ J*(v1,v2,A) (5)

for any admissible v;, ve and u. Clearly, the left inequality in (5) implies that
(u; — ua,)r; < (u; — ug,N)r,, which imposes that (u; — ug, #)r, = 0 for any
admissible u and therefore u; = uz on I'y. The right inequality in (5) imposes
that Jy(u1)+J2(u2) < J1(v1)+ J2(v2) for any pair of admissible functions (v1, v2).
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This implies that among all admissible pairs (v;,v2) which satisfy the continuity
condition (3), the pair (u;,u2) minimizes the sum of the energy functionals J;
and J, defined respectively on Q; and ;. Therefore, u; and u, are the restriction
of the solution u of the non-partitioned problem (1) to respectively £; and 2s.
Indeed, equations (4) and (5) correspond to a hybrid variational principle where
the inter-subdomain continuity constraint (3) is removed by the introduction of
a Lagrange multiplier (see, for example, Pian [8]).

If now the displacement fields u; and u, are expressed by suitable shape
functions as:

Uy = Nu1 and Uy = NUQ

and the continuity equation is enforced for the discrete problem, a standard
Galerkin procedure transforms the hybrid variational principle (4) in the fol-
lowing algebraic system:

K1u1 = f] + B«rA
Kou, =f, —BTA (6)

Biu; = Baoug

where K ;, u;, and f;, j = 1,2, are respectively the stiffness matrix, the displace-
ment vector, and the prescribed force vector associated with the finite element
discretization of ;. The vector of Lagrange multipliers A represents the interac-
tion forces between the two subdomains 2; anc 2, along their common boundary
I';. Within each subdomain 2, we denote the number of interior nodal unknowns
by n} and the number of interface nodal unknowns by nf . The total number of
interface nodal unknowns is denoted by ny. Note that ny = n{ = n{ in the partic-
ular case of two subdomains. If the interior degrees of freedom are numbered first
and the interface ones are numbered last, each of the two connectivity matrices

B; and B, takes the form:
B; = [0; I;] j=12

where O; is an n_{ x nj null matrix and I; is the nf X nJI identity matrix. The

vector of Lagrange multipliers A is nr long.
If both K; and K are non-singular, equations (6) can be written as:
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(B;K;7'BT + B,K;'BT)A

u,

B K;'f, - B,K['f,
K{'(f, + BTX) (7)
Uy, = K;l(fg - B;A)

and the solution of (6) is obtained by solving the first of equations (7) for the
Lagrange multipliers A, then substituting these in the second of (7) and back-
solving for u; and u,.

For an arbitrary number of subdomains Q;, the method goes as follows.
First, the finite element mesh is “torn” into a set of totally disconnected meshes

(fig. 2).

AN
LIN

FIG. 2 Finite Element Tearing

For each mesh, the stiffness matrix K; and the vector of prescribed forces f; are
formed. Next, for each §)j, a set of boolean symbolic matrices Bf are set up to

interconnect the mesh of Q; with those of its neighbors ;. In general, Bf 1s
nr x (n}+ nf) and has the following pattern:
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. 01(.7": k)
02(.7a k)

where O, (7, k) is an m(j, k) x (n;+nJI) zero matrix, O4(7, k) is another m,(j, k) x
(n? + nf) zero matrix and Cf is an mc(j,k) x (n? + n]) connectivity matrix,
mc(7,k) is the number of Lagrange multipliers that interconnect j with its
neighbor {2k, and m, (7, k) and ms(j, k) are two non-negative integers which satisfy
m1(7, k) + mc(J, k) + m2(4, k) = n;. The connectivity matrix Cf can be written
as:

C; = [0s(j,k) If O4(j,k)]

where O3(j, k) is an m.(j, k) x m3(j, k) zero matrix, If is the m.(7, k) x m.(J, k)
identity matrix, O4(j, k) is another m (7, k) x m4(j, k) zero matrix, and m3(j, k)
and my(j, k) are two non-negative integers which verify ms(j, k) + m.(j, k) +
my(7, k) = n}+ nf . If aj and N, denote respectively the number of subdomains
). that are adjacent to 2; and the total number of subdomains, the finite element
variational interpretation of the saddle-point problem (4) generates the following
algebraic system:

k=a;
T .
Kju; = f;+ Y BY' A j=1,N,
k=1 (8)
Bfuj = Biuk J=1,N, and Q; connected to Q;

If K; is non-singular for all j = 1, N,, the solution procedure (7) can be
extended to the case of an arbitrary number of subdomains. However, the finite
element tearing process described in this section may produce some “foating”
subdomains §2y which are characterized by a singular stiffness matrix K ;. When
this happens, the above solution algorithm (7) breaks down and a special com-
putational strategy is required to handle the local singularities.

We refer to the computational procedure presented herein as the method
of finite element tearing and interconnecting because of its resemblance with
Kron’s tearing method [7] for electric circuit models. We also note that the
utility of Lagrange multipliers specifically for domain decomposition has also
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been previously recognized by other investigators (Dihn, Glowinsky and Periaux

[9], Dorr [10]).
3. Handling local singularities
Again, we focus on the two-subdomain tearing. The extrapolation to N, > 2 is

straightforward. For example, suppose that Q corresponds to a cantilever beam
and that 2; and Q, are the result of a vertical partitioning (fig. 3).

FIG. 3 Decomposition resulting in a singular subdomain

In this case, K; is positive definite and K, is positive semi-definite since no
boundary condition is specified over §2,. Therefore, the second of equations (6):

Kou; = f;— BIA (9)



requires special attention. If the singular system (9) is consistent, a pseudo-inverse
of K, can be found, — that is a matrix KI}' which verifies KQK;'Kz = K,, and
the general solution of (9) is given by

u; = K (f — BTA) + R (10)

where R is an (n+n]) xn} rectangular matrix whose columns form a basis of the
null space of K, and « is a vector of length nj. Physically, R, represents the rigid
body modes of §2; and « specifies a linear combination of these. Consequently,
we have nj < 6 for three-dimensional problems, and n§ < 3 for two-dimensional
problems. Substituting (10) into (7) leads to:

(B1K'B{ + B:KfB])A = —B,K['f; + By(KJf; + Rea)
u; = K7i(f; + BT (11)
u, = Kf(f; - BIA) + R

It should be noted that:

1. because B; is a boolean operator, the result of its application to a matrix or
vector quantity should be interpreted as an extraction process rather than a
matrix-matrix or matrix-vector product. For example, B,R,; is the restric-
tion of the local rigid modes R, of Q3 to the interface unknowns. In the
sequel we adopt the notation:

R! = B;R;

2. the pseudo-inverse KJ does not need to be explicitly computed. For a given
input vector v, the output vector K;'v and the rigid modes R, can be
obtained at almost the same computational cost as the response vector K7 'v,
where K is non-singular (see appendiz A).

3. system (11)is under-determined. Both A and « need to be determined before
u; and u; can be found, but only three equations are available so far.

Since K is symmetric, the singular equation (9) admits at least one solution

if and only if the right hand side (f2 — B \) has no component in the null space
of K. This can be expressed as:

R;(f—BIA) = 0 (12)
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The above orthogonality condition provides the missing equation for the complete
solution of (11). Combining (11) and (12) yields after some algebraic manipula-
tions:

[ F; -Rg] [A} B [BzK;fz—Blelfl

R o0 ||« -RTf,
u; = K7(f; + BT

u; = KI(f; - BT+ R (13)
where ‘

F; = (B,K;'BT + B,K}B])

Clearly, F; is symmetric positive definite and R§ has full column rank. Therefore,
the system of equations in (A, &) is symmetric and non-singular. It admits a
unique solution (A, a) which uniquely determines u; and u,.

It is important to note that since nj < 6, systems (13) and (7) have almost
the same size. For an arbitrary number of subdomains N, of which Ny are
floating, the additional number of equations introduced by the handling of local
singularities is bounded by 6/N;. For large-scale problems and relatively coarse
mesh partitions, this number is a very small fraction of the size of the global
system. On the other hand, if a given tearing process does not result in any
floating subdomain, a is zero and the systems of equations (13) and (7) are
identical.

Next, we present a numerical algorithm for the solution of (13).

4. A preconditioned conjugate projected gradient algorithm

Here we focus on the solution of the non-singular system of equations:

{ Fr_ —Ré] [,\] 3 [B;;K'{fz—BlKl—lfl]
~R} o [|la] -RTf,

where (14)

F; = B,K{'BT + B,K}BT
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We seek an efficient solution algorithm that does not require the explicit assembly
of F I '

The solution to the above problem can be expressed as:

A = -H(B;KJf; - B;K['f;) + TR]f,
a = TT(B,K!f, - B,KIf,;) - URJf,
where
(15)
H = F7! ~F'RIU'RITFT!
T = F;'R{U™
U = -RI'F;'R!

As written in (15), this solution procedure is not recommended because it
requires either the evaluation of the inverse of Fy, or the nested solutions of two

T
linear systems involving Fr and R]" F7'RJ. It is noted by Fletcher [11] that if
two matrices S and Z are computed such that:

STR! =1 (16)
zZTR! = O
an alternative representation of the solution to (14) is given by:
A= —H(B2K-2+.f2 - BlKl—lfl) + TR;-f2
a =TT(B;K!f, - B;Kif;) - URJf,
where
(17)
H = Z(Z27F;Z2)'27

T = S—HF;S
U = STF;HF;S - STF;S

which does not require the explicit assembly of F; if a suitable iterative scheme is
chosen for solving all the temporary systems involving the quantity (ZTF 1Z)" 1
Still, the above solution procedure is not feasible because it requires the compu-
tation of S and Z — typically via a QR factorization of some matrix involving
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R [11], and the iterative solution of too many temporary systems before A and
a can be obtained.

Clearly, the nature of F'; makes the solution of (14) inadequate by any tech-
nique which requires this submatrix explicitly. This implies that a direct method
or an iterative method of the SOR type cannot be used. The only efficient method
of solving (14) in the general sparse case is that of conjugate gradients, because
once K; and K, have been factorized, matrix-vector products of the form F;v
can be performed very efficiently using only forward and backward substitutions.
Unfortunately, the Lagrangian matrix:

F; -R!
L =
[—RéT o ]

is indefinite so that a straightforward conjugate gradient algorithm cannot be
directly applied to the solution of (14). However, the conjugate gradient iteration
with the projected gradient (see, for example, Gill and Murray [12]) can be used
to obtain the sought-after solution. In order to introduce the latter solution
algorithm, we first note that solving (14) is equivalent to solving the equality
constraint problem:

minimize ®(A) = -;-,\TFI,\+(BIK;’f1—BzK;fz)T,\ (18)

subject to RIA = RTf,

Since F; is symmetric positive definite, a conjugate gradient algorithm is most
suitable for computing the unique solution to the unconstrained problem. There-
fore, this algorithm will converge to the solution to (18) if and only if it can be

modified so that the constraint R~ A = RTf, is satisfied at each iteration. This
can be achieved by projecting all the search directions onto the null space of Rg .
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The result is a conjugate gradient algorithm with the projected gradient. It
is of the form:

Initialize

Pick A such that R7A® = RIf,

I‘(o) = (BzK-{fg - BlKl-lfl) (19)

Tterate k = 1,2, ... until convergence

gk = pk-DTpk=1) /=D Tpk-2) (30 = 0)

s = [I“Rg(RéTRg)_lRLI'T]S(k) (20)
® = k=T k-1 TR g0 )
A=) 4 (B (R

pB) = pk=1) A OF g(R)

A fast scheme for finding a starting A® which satisfies the constraint
RéTA(O) = Rffg is given in appendiz B. Clearly, RéTS("') = 0 for all k > 1.
Therefore, RgTA(k) = RgTA(O) which indicates that the approximate solution
A(%) gatisfies the linear equality constraint of problem (14) at each iteration k.
It is also important to note that within each iteration, only one projection is
performed. This projection is relatively inexpensive since the only implicit com-

putations that are involved are associated with the matrix R R} which is at
most 6 x 6. This matrix is factored once, before the first iteration begins. Except
for this small overhead, algorithm (20) above has the same computational cost as

the regular conjugate gradient method.
After X is found, the rigid body mode coefficients are computed as:

T - -
a = (R} RI)~Y(F/X — BoK; ' f2 + BiK7 ' f1)
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For an arbitrary number of subdomains N, of which Ny are floating, the
equality constraint is:

rRIT R7T 0 0 [f
T T
R'A=| . [A=Rf=]0 . 0
RY 0 0 RsT| |y

Only those columns of R? which operate on Lagrange multipliers that are
associated with 'y N Q; are non-zero. The projection matrix is P = [I —
RY(R! TR! y-IRS T] where R7"RY is generally banded of dimension at most equal
to 6Ns. The banded structure of P is determined by the subdomains interconnec-
tivity. If for practical reasons this banded structure is not exploited, the number
of three-dimensional floating subdomains should be kept as small as possible,
say less than thirty two, which implies that the proposed computational method
would be suitable only for coarse and medium grain multiprocessors.

5. Preconditioning the interface problem

As in the case of the conjugate gradient method, the conjugate projected gra-
dient algorithm is most effective when applied to the preconditioned system of
equations. It should be noted that even in the presence of floating subdomains,
only F needs to be preconditioned and not the global Lagrangian matrix L. In
the case of two subdomains, F'; can be written in matrix form as:

A I

where Kj_l, 7 = 1,2, is replaced by Kj' if ; is a floating subdomain. The
objective is to find an approximate inverse P! of F that: (a) does not need to be
explicitly assembled (especially since F; is not explicitly assembled), and (b) that
1s amenable to parallel computations. The matrix P is then the preconditioner.
Equation (21) above suggests the following choice for P7!:

oo nls 205 e
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At each iteration k, the preconditioned conjugate projected gradient algorithm
involves the solution of an auxiliary system of the form:

Pz = ¢® (23)

where r(¥) is the residual at the k — th iteration. The particular choice of PI_1
given in (22) offers the advantage of solving (23) explicitly without the need for
any intermediate factorization.

For computational efficiency, PI_1 is implemented as:

P;! = KI+K! (24)

where K{ and K{ are the traces of K; and K, on T'. Clearly, with this choice
for the preconditioner, the auxiliary system (23) is “cheap”, easy to solve and
perfectly parallelizable on both local and shared memory parallel architectures.

Since we do not have a strong mathematical justification for this choice of
the preconditioner, we have conducted a set of numerical experiments to assess
a priori its performance. A fixed-fixed cylindrical panel was discretized with an
N by M regular mesh and was modeled with 4 node shell elements (fig. 4). All
test cases used N, = 2 and a vertical slicing.

FIG. 4 Cylindrical panel - N, =2
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Table 1 shown below reports the condition numbers of the global stiffness matrix
K, the subdomain stiffness matrices K; and K5, and the original and precondi-
tioned interface flexibility matrices F; and PI_IF I, for various values of N.

TABLE 1

Condition numbers

Cylindrical panel - N by M mesh - shell elements - 2 subdomains

N M k(K) x(K1) x(K2) x(Fr) x(P7IF))
10, 5 2.5 104 5.6 10° 5.6 10° 1.4 104 4.9 102
20 10 3.4 10° 2.1 104 2.1 104 2.8 104 3.8 10°
40 20 5410 = 9.110% 9.1 10* 1.2 108 3.1 104

For this test problem, the condition number of the preconditioned interface
is two order of magnitude lower than that of the global problem.

The extrapolation of (22) and (24) to N, > 2 is straightforward. In order to
reduce furthermore the number of preconditioned conjugate projected gradient
iterations, the selective reorthogonalization procedure developed by Roux and
reported in [13] is also utilized.

6. Parallel characteristics of the proposed method

Like most domain decomposition based algorithms, the proposed method of finite
element tearing and interconnecting is perfectly suitable for parallel processing.
If every subdomain 2; is assigned to an individual processor pj, all local finite
element computations can be performed in parallel. These include forming and
assembling the stiffness matrix K; and the forcing vector f;, factoring K; and
eventually computing the rigid modes R j, as well as backsolving for u; after A and
a have been determined. The conjugate projected gradient algorithm described
in Section 4 is also amenable to parallel processing. For example, the matrix-
vector product F;s(¥) can be computed in parallel by assigning to each processor

. T (K . 3 .
p; the task of evaluating yg.k) = Bij_le sg-k), and exchanging ygk) with the
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processors assigned to neighboring subdomains in order to assemble the global
result. Interprocessor communication is required only during the solution of the
interface problem (14) and takes place exclusively among neighboring processors
during the assembly of the subdomain results.

At this point, we stress that the parallel solution method developed herein
requires inherently less interprocessor communication than other domain decom-
position based parallel algorithms. As mentioned earlier, interprocessor com-
munication within the proposed method occurs only during the solution of the
interface problem (14). The reader should trace back this problem as well as the
presence of the Lagrange multipliers to the integral quantity:

(= v Ve, = [ A (25)

where I'f,; is the interface between subdomains ; and Q;. If I's;; has a zero
measure, then (v; — vj, /\)p,‘j = 0 and no exchange of information is needed be-
tween 2; and ;. Therefore the subdomains which interconnect along one edge
in three-dimensional problems and those which interconnect along one vertex in
both two and three-dimensional problems do not require any interprocessor com-
munication. This is unlike the parallel method of substructures, whether the
interface problem is solved with a direct scheme [1] or with an iterative one [2].
For a three-dimensional regular mesh that is partitioned into subcubes, the pro-
posed method of finite element tearing and interconnecting requires that each
subdomain communicate with at most six neighboring subdomains (since a cube
has only six faces), while the parallel method of substructures necessitates that
each subdomain communicate with up to 26 neighbors (fig. 5). This communi-
cation characteristic makes the proposed parallel solution method very attractive
for a multiprocessor with a distributed memory such as a hypercube. Indeed,
the advantages of the method for this family of parallel processors are two folds:
(a) the number of message-passing is dramatically reduced, which reduces the
overhead due to communication start-up, and (b) the complexity of the commu-
nication requirements is improved so that an optimal mapping of the processors
onto the subdomains can be reached (Bokhari [14], Farhat [15]); therefore the
elapsed time for a given message is improved. Both enhancements (a) and (b)
reduce the communication overhead of the parallel solution algorithm in a syner-
gistic manner. This algorithmic feature of the proposed method is still desirable
for shared memory multiprocessors because it eases the assembly process during
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the interface solution and makes the latter more manageable. It is not however
as critical for the performance as it is for local memory multiprocessors.
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FIG. 5 Reduced interprocessor communication patterns
for two and three-dimensional regular mesh partitions

7. Tearing vs. substructuring

Another difference between the subdomain based parallel solution method devel-
oped in this paper and the parallel method of substructures lies in the formulation
of the interface problem. For the method of substructures, the interface problem
corresponds to a stiffness formulation. For the two-subdomain decomposition it
can be written as:

(K~ KK K~ K3 Ky Kopur = 17— KK 11 - KTK 3 22 (26)

where K/, K1; and Kj; are the stiffness matrices associated respectively with
the interface nodes and the interior nodes of subdomains ©; and 23, and K;; and
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K are the coupling stiffnesses between respectively Q; and I'; and Q, and I';
(see, for example [1] for further details). A standard conjugate gradient algorithm
may be used for solving (26). On the other hand, the resulting interface problem
for the method of finite element tearing and interconnecting corresponds to a
flezibility formulation. For the two-subdomain decomposition, it can be written
as in (14) and necessitates the use of a conjugate projected gradient algorithm
for finding the solution A.

If K; and K are partitioned into internal and boundary (interface) compo-
nents and then are injected into the first of equations (7), it can be easily shown
that:

B,K;'B] = (K{} - KTK'K,;)™

(27)
B:K;'BI = (K} — K§/K;'Kop)™

where K(III) and K(IZ,I) denote respectively the contributions of the first and second
subdomains to K;;. Equations (27) above establish the relationship between
both approaches to domain decomposition.

The computational implications of the differences between the two solution
methods are as follows:

e within each iteration, the solution process of problem (14) requires an
additional computational step which corresponds to the projection of the
search direction onto the null space of R..

e within each iteration, the solution process of problem (14) requires the
evaluation of the matrix-vector product B jKj'lB;rs("), while the solution
process of problem (26) requires the evaluation of the matrix-vector product
K}}K;J-IK ;1. Given that B j is a boolean matrix and that its application
to a matrix or a vector defines a floating-point-free extraction process, each
conjugate gradient iteration applied to (14) is less computationally intensive
than its counterpart that is applied to (26).

e since a conjugate gradient algorithm captures initially the high frequency
mesh mode of a problem, it can be expected to perform better on a flexibility
matrix than on a stiffness matrix because the high frequencies of the former
are indeed the low frequencies of the stiffness matrix which are closer to the
solution of the static problem.
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In the light of the above remarks, it is reasonable to expect that for a given mesh
partition:

¢ each conjugate projected gradient iteration that is applied to the solution
of the interface problem (14) which results from the method of finite element
tearing and interconnecting will not be slower — and may be even faster
for large-scale problems and a small number of interface nodes, than each
conjugate gradient iteration applied to the solution of the interface problem
(26) which results from the method of substructures.

o the iterative solution of the interface problem associated with the tearing
method will exhibit a faster rate of convergence than the iterative solution
of the interface problem resulting from the conventional method of substruc-
tures.

- Finally, it should be noted that domain decomposition methods in general
exhibit a larger degree of parallelism than parallel direct solvers. The efficiency of
the latter is governed by the bandwidth of the given finite element system of equa-
tions. If the bandwidth is not large enough, interprocessor communication and/or
process synchronization can dominate the work done in parallel by each proces-
sor. This is true not only for multiprocessors with a message-passing system, but
also for super-vector-multiprocessors with a shared memory such as the CRAY
systems, where synchronization primitives are rather expensive. Therefore, the
computational method described in this paper should be seriously considered
for large-scale problems with a relatively small or medium bandwidth. These
problems are typically encountered in the finite element analysis of large space
structures which are often elongated and include only a few elements along one
or two directions (Farhat [16]). The method is also recommended for problems
where the storage requirements of direct solvers cannot be met.

8. Optimal mesh decomposition

The computational method described in this paper requires that the given finite
element mesh be partitioned into as many submeshes as there are available pro-
cessors. In this section, we establish some guidelines for the design of an optimal
mesh partition by analyzing the effect of its structure on the performance of the
global solution algorithm.

From the numerical point of view, the proposed solution method is hybrid in
the sense it combines a direct and an iterative schemes. The direct solver is ap-
plied to each subdomain problem, the iterative one to the interface between these
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subdomains. If the mesh partition is such that the bandwidth of each subdomain
problem is of the same order as the bandwidth of the global unpartitioned sys-
tem of equations, the overall algorithm performs more operations than a direct -
method applied to the global unpartitioned system, independently of how fast

the interface problem converges. The slicing of a parallelepiped along its largest

dimension yields such a partition (fig. 6). If on the other hand the same paral- -
‘lelepiped is partitioned such that the bandwidth of each subdomain problem is
much smaller than the bandwidth of the original finite element system (fig. 7),
and if the convergence of the interface problem is fast enough, the method of
finite element tearing and interconnecting may produce the solution with fewer
computations than a global direct solver.

FIG. 6 Stripwise partitioning of a parallelepiped

FIG. 7 Bozwise partitioning of a parallelepiped

Besides conditioning, there are two other factors which affect the convergence -
of the interface problem (14) and which are directly related to the mesh partition:
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(2) the number of interface nodes, and (b) the interconnectivity of the subdomains
along their interface. It can be easily checked that within one iteration of the
conjugate projected gradient algorithm, a new information that is issued from a
subdomain Q; reaches only those subdomains that interconnect with Q; along
an edge or a plane. Therefore, the interface problem converges faster for - mesh
partition that is characterized by a larger effective interconnectivity bar.. -Ath.

The above observations suggest that an automatic finie element mesh de-
composer that is suitable for the compute-ional method described herein should
meet or strike a balanced compromise bet -cen the scven following requirements:

1. it should yield a set of subdomains where the bandwidth of each local problem
is only a fraction of the bandwidth of ‘e global system of equations;

o

it should keep {he amount o: nterface nodes as small as possible in order to
reduce the size of the interfac oroblem;

3. it should yield a set of subdomains with a relatively high interconnectivity
bandwidth so that within each iteration a new correction reaches as many
subdomains as possible;

4. it should avoid producing subdomains with “bad” aspect ratio (for example,
elongated and flat subdomains) in order to keep the local problems as well-
conditioned as possible;

5. it should deliver as few as possible floating subdomains in order to keep the
cost associated with the projected gradients as low as possible;

6. it should yield a set of balanced subdomains in order to ensure that the
overall computational load will be as evenly distributed as possible among
the processors;

7. it should be able to handle irregular geometry and arbitrary discretization
in order to be general purpose.

For some mesh topologies, it becomes very difficult to meet simultaneously
requirements (1), (2) and (4). In that case, priority should be given to the
first two requirements. However, we have found that for many problems, the
above requirements can be met, using for example a slightly modified version
of the general purpose finite element decomposer presented by Farhat in [17].
Several decomposition examples are described in Section 9. The most challenging
problem that is yet to be resolved is the rational relationship between the mesh
decomposition and the interface conditioning.
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9. Applications and performance assessment

We first illustrate the proposed parallel computational method with the static
analysis on a 32 processor iPSC/2 hypercube of a three-dimensional mechanical
joint subjected to internal pressure loading. We report performance results which
show that the parallel method of tearing exhibits a better speed-up than the
parallel method of conventional substructuring because it consumes three times
less interprocessor communication. Next, we apply our algorithm to the large-
scale finite element analysis on a 4 processor CRAY-2 of a three-dimensional
cantilever composite beam made of more than one hundred stiff carbon fibers
bound by a nearly incompressible elastomer matrix. We report and discuss in
details the measured performance results for various mesh partitioning strategies.
For that problem, the proposed solution method outperforms the direct Choleski
factorization by a factor greater than three, even for configurations that yield
very ill-conditioned systems. In the following, NP, NE, NDF, Tinsg, Tp and
SP denote respectively the number of processors, the number of elements, the
number of degrees of freedom, the time elapsed in message-passing, the total
parallel time and the overall parallel speed-up.

The finite element discretization of the mechanical joint using 8 node brick
elements is shown in figure 8. Two meshes are considered. The first one con-
tains 5002 elements, 14932 degrees of freedom and is intended for a 16 processor
cluster of the iPSC/2. The second mesh has 9912 elements, 29654 degrees of free-
dom and is constructed for a 32 processor configuration of the same hypercube.
The mesh decompositions into 16 and 32 subdomains are carefully designed to
be topologically equivalent as much as possible to a checkerboard partitioning.

24



Consequently, many of the resulting subdomains are floating.

FIG. 8 Finite element discretization of a mechanical joint

The interprocessor communication time per iteration, the total parallel exe-
cution time, and the overall parallel speed-up associated with the parallel method
of tearing and the parallel method of substructures are reported in table 2 for
both meshes. For all cases, a tolerance of 10~2 on the global relative residuals is
selected as a convergence criterion.

TABLE 2

Performance results on iPSC/2
“

Mechanical joint - brick elements - 16 and 32 subdomains

NP NE NDF Tnygfitr. Tpeglitr. T Ty SP SP
subs. tearing subs.  tearing subs. tearing

16 5002 14932 16.3 m.s. 5.2 m.s. 602 s. 546 s. 14.4 15.4
32 9912 29654 179 m.s. 5.4 m.s. 1103s. 917s. 24.0 28.8
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For both cases, the parallel tearing and parallel substructuring algorithms achieve
excellent speed-up. This is generally true for all balanced algorithms that require
message-passing only between neighboring processors. However, for this problem,
the tearing algorithm is faster and exhibits a 20 % higher speed-up than the con-
ventional substructuring algorithm for which the time elapsed in interprocessor
communication is 3.31 times higher. Again, because it avoids interprocessor com-
munication along the edges and corners of the subdomains, the tearing algorithm
requires fewer message-passing startups which, in the case of short messages, are
known to account for the largest portion of the time elapsed in interprocessor
communication on the iPSC/2 (see, for example, the benchmarks of Boman and
Rose [18]). A performance comparison with a parallel direct solver is not provided
because of the lack of memory space to store in-core the triangular factors of K.

Now that the parallel properties of the presented algorithm have been illus-
trated, we focus next on example problems that illustrate its intrinsic properties
and performance. We consider the large-scale finite element static analysis of the
pure bending of a set of beams made of similar jointed composite “pencils” (fig.
9). Each composite pencil contains one carbon fiber with its elastomer matrix
and is discretized in 51 vertical layers containing each 25 mesh points. The cross
section of the finite element mesh corresponding to a 16 pencil beam is shown in
figure 10.
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FIG. 9 A composite beam and a composite pencil
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FIG. 10 Cross section of the finite element mesh
for a 16 pencil composite beam

The numerical results obtained on a 4 processor CRAY-2 for a 16 pencil beam
with 48000 degrees of freedom are reported in figures (11-12). These correspond
to two extreme mesh decompostions, namely: a horizontal cross-slicing into 4
subdomains each containing 4 cantilever parallel pencils (D1), and (b) a vertical
slicing into 4 subdomains of which three are floating (D2). Poisson’s ratio for the
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elastomer is 0.49.
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FIG. 11 Numerical results for decomposition D1
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FIG. 12 Numerical results for decomposition D2

For each decomposition case, three curves are reported which correspond
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to monitoring convergence with three different measures: (A) the global force
relative residual, (B) the displacement relative variation, and (C) the interface
relative residual. Clearly, decomposition D1 induces a faster convergence rate
than decomposition D2. We have predicted this result since within each itera-
tion of the iterative solution of the interface problem, information reaches all of
the subdomains in decomposition D1, while it reaches only half of these in de-
composition D2. Another important result relates to the relative positioning of
the three curves, independently from the decomposition pattern. Note first that
convergence with the global force relative residual is harder to achieve than con-
vergence with the displacement relative variation. This is because the problem
suffers from a severe ill-conditioning due to the incompressibility of the elastomer
(Poisson ratio = 0.49) and the elongated shape of the cantilever composite beam.
Note also that convergence with the interface relative residual is closer to con-
vergence with the displacement relative variation than it is to convergence with
the global force relative residual. This is because the interface problem is formu-
lated in the functional space of the stresses, so that its residuals correspond to a
displacement increment.

Finally, the tearing method is compared for performance with a direct
Cholesky factorization. The same bending problem is selected for that purpose.
Several different mesh configurations which correspond to different numbers of
pencils are considered. Performance results on a CRAY-2 single processor are re-
ported in Table 3. A tolerance of 107° on the global relative residuals is selected
as a convergence criterion.



TABLE 3
Performance results on CRAY-2

Composite beam - brick elements - direct vs. 4-subdomain tearing

Number of pencils 4 9 16
NDF 13000 28000 48000
4-subdomain tearing method

NDF interface 2450 7350 14700
# iterations 130 210 300
CPU time 20 s. 73 s. 193 s.
Memory size 1.6 m.w. 4.5 m.w. 9.5. m.w.
Global " Cholesky factorization

CPU time 15 s. 130 s. 650s.
Memory size 3.6 m.w. 16 m.w. 50 m.w.

The above results demonstrate that for sufficiently large problems, the tear-

ing method can outperform direct solvers. For the particular problem above, it
runs up to 3.3 times faster than Cholesky factorization and requires 5.2 times less

memory space.

10. Closure and overview of subsequent research

A novel domain decomposition approach for the parallel finite element solution
of equilibrium equations is presented. The spatial domain is partitioned into a
set of totally disconnected subdomains, each assigned to an individual proces-
sor. Lagrange multipliers are introduced to enforce compatibility at the interface
nodes. In the static case, each floating subdomain induces a local singularity that
is resolved in two phases. First, the rigid body modes are eliminated in parallel
from each local problem and a direct scheme is applied concurrently to all sub-
domains in order to recover each partial local solution. Next, the contributions
of these modes are related to the Lagrange multipliers through an orthogonality
condition. A parallel conjugate projected gradient algorithm is developed for the
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solution of the coupled system of local rigid modes components and Lagrange
multipliers, which completes the solution of the problem. When implemented
on local memory multiprocessors, this proposed method of tearing and intercon-
necting requires less interprocessor communications than the classical method of
substructuring. It is also suitable for parallel/vector computers with shared mem-
ory. Large-scale example applications are reported on the iPSC/1 and CRAY-2.
Measured performance results illustrate the advantages of the proposed method
and demonstrate its potential to outperform the classical method of substructures
and parallel direct solvers.

It is our experience that domain decomposition methods are very sensitive
to the mesh partition. In this paper, we have outlined some guidelines for the
practical decomposition of a given finite element mesh. Subsequent research will
focus on determining the relationship between a pattern of decomposition and the
resulting conditioning of each of the local problems and the interface one. While
several preconditioners for conventional domain decomposition methods (Schur
methods) are available in the litterature, further research is needed to develop a
preconditioner for hybrid domain decomposition algorithms such as the tearing
method developped herein.

Appendix A. Solving a consistent singular system K u; = f;

For completeness, we include in this appendix a derivation of the solution of a
consistent singular system of equations. In this work, such a system arises in
every floating subdomain §2; and takes the form:

Kju; = f; (28)

where K is the (n} + nJI) X (n}+ nJI) stiffness matrix associated with Q;, and u;
and f; are the corresponding displacement and forcing vectors. If Q; has nj rigid
body modes, K is rank n] deficient. Provided that f; is orthogonal to the null
space of K, the singular system (28) is consistent and admits a general solution
of the form:

u; = K;'fj +Rja (29)

where Kj' is a pseudo-inverse of K; — that is, K;’" verifies KjK;'KJ- = K;, R;
is a basis of the null space of K; — that is, R, stores the nj rigid body modes
of §;, and a is a vector of length n containing arbitrary real coefficients.
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A. 1 Computing the rigid body modes

Let the superscripts p and r denote respectively a principal and a redundant
quantity. The singular stiffness matrix K; is partitioned as:

K?? K7”
= j
j j
where K?” has full rank equal to nj + nf —nj. If R; is defined as:
_KPPTIKPT |
R; = [ Ki K; ] (31)
;

where In; is the nj xnj identity matrix, then R; satisfies:

K,R; = 0

Moreover, I,: has full column rank and so does R;. Therefore, the n} columns
of R; as defined in (29) form a basis of the null space of K.

A. 2 Computing Kj'fj
The partitioning of the singular matrix K; defined in (30) implies that:

K7™ = KVTKPTIKY (32)

Using the above identity, it can be easily checked that the matrix K;" defined as:

K™ O
+ — J
<= %5 o)

is a pseudo-inverse of K;. Therefore, a solution of the form Kj'f j can be also
written as:

pp—lep
u; = Kj-f] = l:Kj fJ:l

o

In practice, K; cannot be explicitly re-arranged as in (30). Rather, the
following should be implemented when K; is stored in skyline form. A zero
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pivot that is encountered during the factorization process of K ; corresponds to a
redundant equation which needs to be labeled and removed from the system. The
zero pivot is set to one, the reduced column above it is copied into an extra right

hand side — this corresponds to a forward reduction with Kfru; as right hand

side, and the coeflicients in the skyline corresponding to that pivotal equation
are set to zero. At the end of the factorization process, the non-labeled equations
define the full rank matrix K??. The backward substitution is modified to operate

also on the n} extra right hand sides in order to recover uf = —Kf”_lK;’ru;.
The above procedure for solving a consistent singular system of equations

has almost the same computational complexity as the solution of a non-singular
one.

Appendix B. Starting Lagrange multiplier vector
In this appendix we present a fast scheme for generating a starting vector A(®
for the conjugate projected gradient algorithm (19-20). We consider the general

case of an arbitrary mesh partition.

For each floating subdomain €2}, the corresponding component of the starting
vector has to satisfy the equality constraint:

T, (0
RITAY = RTf, (33)

where R; is an (n} + n_{) X n} full column rank matrix which stores the rigid
body modes of the floating subdomain }, RJI- 1s the restriction of R; to the
intersection of §2; and the interface I';, and f ; 1s the vector of prescribed forces
in Q;. If A§0) is written as:

AP = RIpl” (34)

then (33) becomes:

T )
(R} R))u” = RTf, (35)

which admits as solution:
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T —
p = (R R))T'R]E, (36)

Therefore, a starting vector AS-O) which satisfies the constraint equation (33) is
given by:

AD = RIRITRDTRTY, (37)

. T . . . .
The matrix product (Rf Rf) is only n} x n}, where n} is the number of rigid

. T .
body modes of the floating subdomain ;. Therefore, (R_{ RJI- ) is at most 3 x 3
in two-dimensional problems and at most 6 x 6 in three-dimensional problems,
and the evaluation of AEO) according to (37) requires little computational effort.
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Abstract. A domain decomposition algorithm based on a hybrid variational
principle was proposed in reference [1] for the parallel finite element solution of
self-adjoint elliptic partial differential equations. First, the spatial domain was
partitioned into a set of totally disconnected subdomains and an incomplete finite
element solution was computed in each of these subdomains. Next, a number of
Lagrange multipliers equal to the number of degrees of freedom located at the
binding interface were introduced to enforce compatibility constraints between
the independent local finite element approximations. For structural and mechan-
ical problems, the resulting algorithm was shown to outperform the conventional
method of substructures, especially on parallel processors. Here, the use of a much
lower number of Lagrange multipliers for interconnecting the incomplete field fi-
nite element solutions is investigated. When accuracy is preserved, this approach
reduces drastically the computational complexity of the Schur-complement-like
coupling system that is associated with the interface region and enhances signifi-
cantly the overall performance of the methodology. Finite element procedures for
both global and piecewise polynomial approximations of the Lagrange multipli-
ers are derived. Finally, some numerical results obtained for structural example
problems that validate the main idea and highlight its advantages are presented.
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1. Introduction.

Recently, Farhat and Roux [1] have presented a parallel finite element computa-
tional method for the solution of static equilibrium problems that is a departure
from the parallel method of substructures (see, for example, Nour-Omid, A. Raef-
sky and G. Lyzenga [2], Farhat and Wilson [3]). The unique feature about the
proposed procedure is that it requires fewer interprocessor communication than
traditional domain decomposition algorithms, while it still offers the same amount
of parallelism. The computational strategy was denoted by “finite element tearing
and interconnecting” because of its resemblance with the very early work of Kron
[4] on tearing methods for electric circuit models. Basically, the finite element
mesh is “torn” into a set of totally disconnected submeshes and a computational
strategy is derived from a hybrid variational principle where the inter-subdomain
continuity constraint is removed via the introduction of a Lagrange multiplier
function.

In reference (1], the authors have interconnected the subdomain incomplete
finite element solutions with a number of discrete Lagrange multipliers that is
equal to the number of degrees of freedom that are lying on the binding interface.
That allowed them to recover exactly the same finite element solution as with
non-hybrid variational principles. Here, we consider the use of a substantially
lower number of discrete Lagrange multipliers, which would further enhance the
serial and parallel performance of the proposed computational algorithm when an
adequate accuracy is preserved. The fundamental idea is not essentially different
from the one presented in the mathematical work of Dorr [5]. In order to motivate
this approach, we first re-derive in Section 2 the basic method of tearing and
interconnecting and summarize its major computational advantages. In Sections
3 and 4, we develop polynomial and piecewise low order polynomial expressions for
the finite element discretization of the interface Lagrange multiplier function and
describe their computer implementation. We consider both cases of continuum
and lattice structures. In Section 5, we present an iterative refinement procedure
for improving the accuracy of the resulting algorithm and in Section 6 we report on
some numerical results obtained for two-subdomain problems and problems where
the meshes are decomposed with one-way separators only. These preliminary
results indicate that a very high accuracy is achieved with a very low number of
discrete Lagrange multipliers. We also highlight the computational advantages
of the proposed parallel algorithm with the large-scale static analysis of the Solid
Rocket Booster (SRB) on the CRAY Y-MP; for that problem, the parallel skyline
and banded solvers are outperformed.



2. A method of finite element tearing and interconnecting

Here we summarize a domain decomposition based algorithm associated with a
hybrid formulation for the parallel finite element solution of the linear elastostatic
problem (Farhat and Roux [1]). The method is equally applicable to the finite
element solution of any self-adjoint elliptic partial differential equation. For the
sake of clarity, we consider only the case of two subdomains. The generalization
for an arbitrary number of subdomains is fully developed in [1].

The variational form of the three-dimensional elastostatic boundary-vaiue
problem goes as follows. Given ¢ and A, find the displacement function u which
is a stationary point of the energy functional:

1
J(v) = a(v,0) - (v,9) - (v, W)r
where
a(v,w) = /v(i.j)ci:‘klw(k,l) o8 (1)
(v,9) = v;g; 682

(v,h)r = / vih; 6T
Ta

:o\::o

In the above, the indices i, j, k take the value 1 to 3, vy j) = (vi,; + v;:)/2 and
v;,; denotes the partial derivative of the ¢ — th component of v with respect to
the j — th spatial variable, c;;xi are the elastic coefficients, 2 denotes the volume
of the elastostatic body, T its piecewise smooth boundary, and I';, the piece of T’
where the tractions h; are prescribed.

If Q2 is torn into two regions Q; and Q, (Fig. 1), solving the above elastostatic
problem is equivalent to finding the two displacements functions u; and u, which
are stationary points of the energy functionals:
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1
Ji(v1) = 561(01,711)9l - (v1,9)a, — (v1,Rh)r,

1
J2(v2) = Ea(vi’vl)?)ﬂz - ('02, 9)92 - (v2’ h)rz

where
a(vl,wl)m = / V1(3,5)CijkiW1 (k,D) 50
@
a(ve, wa)a, = / va(i,j)Cij kW2 (k1) 6K (2)
Q2
(vi,9)a, = / v1:fi 68
2
(v2:9)a, = / v9i fi 6Q2
197}
(’Ul,h)r‘l = / vlih,- 5F
Thy

('Ug, h)r‘2 = / 'Ug,'h,’ (5F
| AP

and which satisfy on the interface boundary I'; the continuity constraint:

u; = up only (3)

4



FIG. 1 Tearing in two subdomains

The two above variational problems (2) with the subsidiary continuity condi-
tion (3) can be casted into a single hybrid variational principle (see, for example,
Pian [6], Zienkiewicz and Taylor [7] and references cited therein) which corre-
sponds to finding the saddle point of the total potential energy:

J*(v1,ve,p) = J1(v1) + J2(vo) — A A(vy —vq) 6T (4)

If now the displacement fields u; and u; are expressed by suitable shape
functions as:

Uy = Nul and U2 = NUZ (5)

and the continuity equation is enforced for the discrete problem — that is, if a
discrete Lagrange multiplier A; is introduced at each i — th degree of freedom of
the discrete interface boundary I'y, a standard Galerkin procedure transforms the
hybrid variational principle (4) in the following algebraic system:

)



Kyu; =f, +BTA
K2U.2 = f2 et BgA (6)

Byu; = Bau;

where K ;, uj, and f;, y = 1, 2, are respectively the stiffness matrix, the displace-
ment vector, and the prescribed force vector associated with the finite element
discretization of 2;. The vector of Lagrange multipliers A represents the interac-
tion forces between the two subdomains 2, and §2; along their common boundary
I';s. It introduces in the above system of equations the quantities KT IBTA and

K5 1BT/\ which implicitly correct the incomplete finite element solutxons K{'f,
and K f2

Within each subdomain 2 ;, we denote the number of interior nodal unknowns
by nj and the number of interface nodal unknowns by nf The total number
of interface nodal unknowns is denoted by n;. Note that ny = n{ = nf in
the particular case of two subdomains. If the interior degrees of freedom are
numbered first and the interface ones are numbered last, each of the two boolean

connectivity matrices B; and B, takes the form:
B; = [0; Ij] j=1,2 (7)

I

where Oj is an nj X nj null matrix and I; is the nf X nf identity matrix. The

vector of Lagrange multipliers A is n; long.

The stiffness matrices K; and K, are non singular if and only if each of
the defined subdomains has enough prescribed boundary conditions to eliminate
its rigid body modes. However a typical mesh decomposition often produces a
certain number of floating subdomains. If in the above example Q2 is a floating

subdomain, equations (6) can be re-arranged after some algebraic manipulations
(see [1]) as:

Fr -R{J[a ‘B,K}f, - BiK['f,

w o] - [P
u; = K7'(f, + BT)) ®
u; = K (f; —BIMA) + Ry

where F;y = B KI'IB +B2K+B2 , K2 is a pseudo-inverse of K, R, is an (n§+
ni) x nj rectangular matrix whose columns represent the n, rigid body modes of
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22 and « specifies a linear combination of these. For three-dimensional problems
n} < 6, and for two-dimensional problems nj < 3. Clearly, the Lagrangian matrix
is indefinite. However, F; is symmetric positive definite and Rg has full column
rank. Therefore, the system of equations in (A, &) is symmetric and non-singular.
It admits a unique solution (A, &) which uniquely determines u; and us,.

It is important to note that since n} < 6, the Lagrangian system (8) and F,
have almost the same size. For an arbitrary number of subdomains N, of which
Ny are floating, the additional number of equations introduced by the handling
of local singularities is bounded by 6/Ns. For large-scale problems and relatively
coarse mesh partitions, this number — which determines the size of «, is a very
small fraction of the size of the global system. On the other hand, if a given
tearing process does not result in any floating subdomain, o vanishes and the
corresponding Lagrangian and F systems become identical.

In reference (1], a set of guidelines for carrying out the practical decom-
position of an arbitrary mesh, as well as a parallel computational scheme for
solving equations (8) in the presence of an arbitrary number of subdomains were
presented. The proposed computational scheme featured a parallel precondi-
tioned conjugate projected gradient algorithm for the solution of the indefinite
Lagrangian system. It was also shown that the proposed method of finite element
tearing and interconnecting compares favorably with the conventional method of
substructures and with direct solvers on both serial and parallel computers. It
is particularly attractive for local memory multiprocessors such as hypercubes
because it intrinsically requires much less interprocessor communication than the
parallel method of substructures [2]. This is because the need for interprocessor
communication in this formulation is exclusively induced by the weak form of the
continuity constraint:

(vi —vj Ay, = / Alv; — vj) 6T (9)

Tr,;

and because if I'7;; has a zero measure, then (v;—-v;, ’\)1'1.-; = 0 and no exchange of
information is needed between subdomains 2; and ;. Therefore the subdomains
which interconnect along one edge in three-dimensional problems and those which
interconnect along one vertex in both two and three-dimensional problems do not
require any interprocessor communication. This is unlike the parallel method of
substructures and other conventional domain decomposition algorithms.

7



The efficiency of the tearing method outlined above depends on how fast the
Schur complement or interface system represented here by F; can be solved. This
is often the case for many of the subdomain based implicit/explicit parallel solu-
tion algorithms. The nature of F; = B; K[ 1B1T+B2K'2"B{ makes the solution of
the interface system inadequate by any technique which requires this submatrix
explicitly. This implies that a direct method or an iterative method of the SOR
type cannot be used. The only efficient method for solving this system is that of
conjugate gradients, because once K; and K, have been factorized, matrix-vector
products of the form Frv can be performed very efficiently using only forward
and backward substitutions. Therefore convergence rate becomes the key factor
for enhancing the overall efficiency of the procedure. In reference (1], the authors
have considered careful mesh partitioning schemes and a suitable preconditioner
for improving this convergence rate. Here we investigate an approach for speeding
up the solution of the interface system which consists of reducing drastically its
size. When this can be achieved (without hurting accuracy) to an extent where
F can be explicitly formed, assembled and stored, a direct solution method is
applied to the Schur complement equations so that the convergence rate is not
any longer an issue. Otherwise, the same semi-iterative algorithm as presented
in (1] is used for solving the new interface system that is characterized by a much
smaller size than in our previous work.

In this paper, we concentrate on the two-subdomain problem which high-
lights the main idea and does not require a substantial amount of coding. The
obtained results are so encouraging (Section 6) that we have started developing
the necessary software for handling arbitrary mesh decompositions with multiple
subdomains. This effort will be reported in a forthcoming paper.

Next, we discretize the Lagrange multiplier function that binds the subdo-
main incomplete solutions using a polynomial approximation and derive the finite
element representation of the new interface system. '

3. Approximating the Lagrange multipliers with polynomials

The weak form of the equations of static equilibrium associated with the hybrid
variational principle formulated in equation (4) is obtained using the standard



virtual work principle. It is expressed as:

§uy TLTDLu; 6Qy — | 6u, TAST — / su; TgéQ — | 6u;ThéT = 0
F[ Ql

Q. 'y

/ §us TLTDLuy6Q, + [ 6upTAST — / bu TgéQ — | 6u,Thél = 0
Q, Qq 'y

T;
/ Sx(ul —ulr = 0
T
(10)

where the vectors g and h have been defined in equations (2), the vectors u; and
u; in equations (5), and D and L are the matrix representations of, respectively,
a constitutive equation and a spatial derivative operator.

If the Lagrange multiplier function A is degree-of-freedom collocated along
the interface — that is, a discrete Lagrange multiplier scalar \; is attached at
each degree of freedom lying on the interface boundary I'j, the above equations
are transformed into the algebraic equations (6), where the vector of Lagrange
multipliers A is ny long. As aresult, the interface system of equations (8) is nyxn;
large. In order to reduce the size of this system, we consider first a polynomial
approximation for A. For this purpose, we assume that the finite element problem
of interest has d degrees of freedom per node and that the interface I'; between
2; and Q, is parametrized by a curvilinear abscissa s (Fig. 2).

FIG. 2 Parametrization of a two-subdomain interface



We define d polynomials of degree p as:

k=p

AM(s) = Z ALsk
k=0
k=p

N(s) = ) ARk
k=0

(11)

k=p

2(s) = Z/\zs"
k=0

where p is much smaller than n; and {2}, A\3,...,A4, k =0,1, ..., p} are (p+1)d un-
known discrete Lagrange multipliers. Physically, these still represent the interface
tractions that are necessary to maintain equilibrium between the two subdomains
2; and Q3. The superscript j, j = 1,2. ..., d denotes the directional freedom (z, y,
or z displacement/rotation) of the corresponding traction component. However,
unlike in our previous work, these multipliers are not specified at any location
of the discrete interface I'y. In particular, they are not necessarily attached to
any particular node. Substituting (11) into (10) after re-arranging the third of
equations (10) results in the algebraic system:

Klul = f1 + B’;TAP
Kou, =f, —B2T), (12)

Bful = Blz,u2

where A, is now the (p + 1)d long vector:

A= (AN . 0o 2 LT (1)
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and B} and B are now non-boolean finite element matrices of sizes (p + 1)d x
(n{ +n;) and (p + 1)d x (n§ + ns) that are assembled from their element level
correspondents BY (®) and B2 (¢) in the usual manner:

B? = 5 BX ;=102 (14)

where e spans only the set of elements that are connected to the interface bound-
ary I';. For a finite element e with ¢ nodes lying on Iy, the ¢d x (p+ 1)d element
level matrices Bﬁ(c), J = 1,2 are given by:

B IBR(C) 7
J
2B1?(e)
J

ple) _ .
B2 = (15)

where IBf(e), l=1,2,..,qis adx (p+1)d matrix associated with the [ — th node
of element e and has the following form:

Imple) _ ) (o) (o) (e)
BYY = [ig2l9 g2l iprld o ige()] (16)

and ’ka(e), k =0,..,p is a d x d diagonal matrix associated with the k — th
monomial s* and is expressed as:

B2 = Ns*6T) 1, (17)
rr® ~

where N, is the shape function associated with the ! — ¢k node of element e and
14 is the d x d identity matrix. As an example, for elements that have two and
only two nodes lying on I'; (¢ = 2) and for the case of linear shape functions Ny,
the submatrices LB;’(C), l=1,2, k < p, are given by:

k J 89 — 81 k + 2 k +1

1 k+2 _ k42 k42 _ k41 (18)
23}}(5) — (32 S + 3 S 31) 1,
k J So — 81 k + 2 k + 1

11



where s; < 32, and s; and s, are the curvilinear abscissae of the two nodes of
element e that lie on I'; (Fig. 2).

At this point, it is worthwhile to point out that increasing the degree of the
polynomial approximation of A¥, k = 1,2, ..., d involves only adding a few columns
to the existing element level matrices ’Bf (©) asit is suggested by equation (16).

For two-subdomain tearings, the constraint matrices B’; have the following
pattern:

B? = [0; B?] j=1,2 (19)

where Oj is an (p+1)d x n} null matrix and B? is the (p+1)d X n; sparse matrix:

D1 o Dyy

BY = | .. . . | (20)

DP+1,1 DP+1J'

where 7 = n;/d and D;; is a d x d diagonal matrix.

Equations (12) above can be re-arranged as:

Fi  -Ri][A,
T
~R] o a

u;

-RTt,
Ki'(f1 +BiA,)
Uy = K;(fg - BgAp) + Rza

[B;’K;*f2 ~ BPK['f,

(21)

where all variables have the same physical meaning as previously. However, the
size resulting interface system

Ff = BIK{'B}" +BJKjB}’ (22)

is now only (p+1)d x (p+1)d. Since A, does not enforce the continuity constraint
equation (3) at each of the nodes of the discrete interface I';, the finite element
field approximations u, and u, given by the solution of system (21) are in general
discontinuous along I';. In order to uniquely define the finite element solution
along the interface boundary, we average the two computed solutions to obtain;

12



=

1
u® = ujr, = S(u;+u2)lr, (23)

We postulate that the above averaged interface solution u* is more accu-
rate than each of the restrictions of the subdomain solutions u;|r, and u,|r,.
Therefore, we back-propagate to the interior of the subdomains 2; and Q, the
enhancing effect of the averaging procedure (23) by imposing u = u* on I'; and
solving two independent displacement-driven subdomain problems. For this pur-
pose, we first partition the stiffness matrix of each subdomain as:

K;,, K;
K; = [ 5 “1] i=1.2 (24)
! Kia Kin

where the subscripts ss, I] and sI refer respectively to interior, interface and
interior/interface coupling quantities. For any set of given boundary conditions
and any mesh decomposition pattern, the resulting K; , stiffness matrix is non-
singular. Next, the improved finite element subdomain solutions are computed
as:

u; = Kj;sl(fjs - Kj’Iu*) ] = 1,2 (25)
It should be noted that the above improvement of the subdomain solutions u; and
u, 1s perfectly parallelizable and requires only one sparse matrix-vector multiply
and one pair of sparse forward/backward substitutions per subdomain. The tri-

angular factors of K; ; are embedded in those of K; which have been previously
computed. :

Usually, the stresses that develop in a structure are more important to the
analyst than the displacements it undergoes. However, the above improvement
procedure is such that if u* is a highly accurate approximation of the interface
solution, uj, 7 = 1,2 become highly accurate approximations of the subdomain
solutions and therefore it is not necessary to monitor the stress fields.

The solution approach presented here requires a parametrization of the inter-
face boundary I';. For a given finite element model and a given mesh decompo-
sition, the interface boundary I'; is always well defined for continuum problems.
Therefore, its parametrization is straightforward, especially for two-subdomain
problems. However, lattice structures require a special treatment. For the lat-
ter problems, if I'; is constrained to follow the path defined by the structural

13



members that connect the nodes that are shared by two lattice subdomains, 'y
will not be identical on both sides of the interface (Fig. 3a-3c). Therefore for
lattice structures we select 'y as the “geometrical path” that (a) is the simplest
to parametrize, and (b) has the same trace on the lattice subdomains it inter-
connects. In particular, only the finite element nodes of this interface need to
intersect with the structure. Figure 3d depicts I'; for the structure shown in
Figure 3a.

In general, the number of Lagrange multipliers, V), that is needed to achieve
a certain accuracy is problem dependent. If this number is rather small — say
less than a hundred, then it is feasible to form explicitly F¥ and solve the system
of equations (21) using a direct method. Otherwise, the semi-iterative solution
algorithm developed in reference (1] is recommended. However, beyond a certain
value of N, the polynomial approach developed in this Section becomes nu-
merically problematic. Indeed, approximating the Lagrange multiplier functions
with higher order polynomials of degree p = Ny/d — 1 typically results in very
ill-conditioned matrices B‘;K;IB'J‘?T, which may cause the performance and/or
accuracy of the proposed computational method to deteriorate. Next in Section 4
we develop piecewise low order polynomial approximations for the finite element
discretization of the Lagrange multiplier functions (11), that are suitable for the
case of a rather large value of V). We remind the reader that d denotes the num-
ber of degrees of freedom per node; for simplicity, it is assumed to be constant
over the nodes. Therefore, since IV denotes the total number of discrete Lagrange
multipliers, N,/d represents the number of locations where surface tractions, or
discrete Lagrange multipliers, are to be introduced.

14



FIG. 3 Interface boundary definition for lattice structure
" (a) truss structure - (b) continuum-like left interface

(¢) continuum-like right interface -
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(d) adopted interface boundary



4. Piecewise low order polynomial approximations

The objective of this section is to develop an alternative procedure for the finite
element discretization of the interface tractions that results in a better conditioned
interface problem than previously when the total number of discrete Lagrange
multipliers that are introduced, Ny, is rather large.

Let T'% k = 0,...,Nx/d — 2 denote a partition P of the interface boundary
I’; defined as:

% = [sk, sk41] k=0,..,Ny/d—2 (26)

where sx, k = 0,...,Nz/d — 1 are the curvilinear abscissae of N/d specified
points on 'y where the discrete surface tractions AJ are introduced. Within
each subinterval T'4, we define d cubic polynomial expressions for the Lagrange
multiplier approximations as:

S1(s) = by + chels = su) + ehyls = 5% + cly(s — s2)?
M(s) = cli+edi(s —sk) + Buls —si)? + cdils — sx)°
(27)
M(s) = cfy +egils — k) + (s — s2)? + cdils — si)®
where cfk, 1=1,...,4, 7 =1,...,d are determined by imposing:
:\i(sk) = ’\{: ) :\{-(Skﬂ) = ’\i+1
dX d)i dX\ d)\J
j;f(Sk) = =7 (%) 5 —df(SkH) = 7 (sk41) (28)
k= 0,...,Nx/d—2
j =1,..d

The first set of equations (28) imply that :\{(s k1) = :\i+1 (sk+1), so that all A7 are
guaranteed to be continuously approximated on I';. The second set of equations
(28) involve the derivatives of the Lagrange multiplier functions which are neither
available nor part of the weak form of the static equations of equilibrium (10).
Following Conte and de Boor (8], we approximate these derivatives by:
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B, A -+ 20k k)

—d—S—(Sk) - Aosg (29)
where As; and Ajsy are defined as:
Asy = Sk+1—$
k Sk+1 k (30)
Agsp = Sp41 — Sk—1

Note that (29) requires the two additional points s_; and s, /4 Which we choose
as:

S_1 = 89
(31)
SNy/d = SNy/d-3

Substituting (27) and (29) into (28) determines the constants c{k as functions
of the discrete Lagrange multipliers:
e = Ak
e = EarAiyy +M2rA% + Cardi_,y
e = EaxMipg + MkAhyy + CAL FvakA

e = EakMiyn +1akMyy + CuM + vaeXtoy

(32)

where &k, 3k, Eaky M2k, M3ks Nak> C2ks (3ky Caky Vak, and vyg are constants that
depend only the curvilinear abscissae sg—1, Sk, Sk+1 and sg+2 (see Appendiz A).

As previously, equations (32) are substituted into equations (27) and (27)
into (10) to obtain:
K1u1 = fl + BTTA’p
K2u2 = f2 - B;TAP (33)

Bfu; = B2PUQ

where BY and B} are now non-boolean finite element matrices of sizes Ny x
(ni +nr) and Ny x (n3 + nr). The subscript/superscript P emphasizes the de-
pendence of these quantities on the partition P of the interface boundary I'; (26).
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(e)

Both matrices are assembled from their element level correspondents e Bf and
B'p(e) . )
kB  in the usual manner:
P Z ple) .

e

where e spans only the set of elements that are connected to I';. The left subscript

k¢ emphasizes the dependence of keB;p(e) on the subinterval I'¥ = [s;, sgy;] where
one edge of element e falls. For a finite element e with ¢ nodes lying on I'y, the

)

gd x N element level matrices ker(c , 7 =1,2 are given by:

- p(e) 1
L.B]

2 ‘P(C)
ple) kij

ple)
-‘}IgeBJ‘ -

where f‘.Bf(e), l=1,2,...,q1s ad X Ny matrix associated with the | — th node
of element e and has the following form:

1 pPle) _ . (e) (e) (e) (e) e
By = [0y L_ P LpP? L B8P L ,BPY ok] (36)

where O%° and O% are respectively left and right d x (k* — 1)d and d x (N -

(k¢ + 3)d) zero matrices, and ',B;P(e) is expressed as:

LBPY = By (37)

where I4 is the d x d identity matrix and Bge -1, Bke, Fre+1 and Fre42 are function
only of the partition P of I'y and are given by the following integration:

[ MeNED = By Bede + BrepiMegs + Besales (39)
I
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It should be noted that while the symbolic derivation of equations (36-38) appears
to be somehow complicated, their computer implementation is straightforward
and their processing is inexpensive.

For two-subdomain tearings, the constraint matrices B? take the following
form:

B} = [0; B}] j=12 (39)

where O; is an Ny x n; null matrix and E? is the Ny x ny four diagonal sparse
matrix:

. N NN OO0 .. Lo

= O Di-1x Dik Diki+1 Dix+2 O O
B? = ’ ’ ’ 40
j NN NN e o) (40)

O Dr—l,r Drr

where r = Ny/d and D;; is a d x d diagonal matrix.

After BY and BY are set up, the system of equations (33) is solved as
described in Section 3. In particular, the averaging and correcting procedures
outlined in Section 3 are also used.

Approximating A with polynomials (Section 3) does not require the location
of the corresponding physical surface tractions to be specified. On the other hand,
using piecewise low order polynomials for that purpose (Section 4) requires the
definition of a partitioning P of I';, which corresponds to specifying the location
of the physical surface tractions along I'y. Therefore from a practical viewpoint,
the first approach seems more attractive. However, specifying where a surface
traction is to be introduced can be turned into an advantage if one looks at it as
an additional freedom. For example, if the stress field along I'; can be predicted
qualitatively prior to the analysis, the partition P will be refined in the areas of
oscillation or high concentration, and coarse otherwise. That would improve the
efficiency of the approximation.
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5. An iterative refinement procedure for accuracy improvement

Here we outline an iterative refinement procedure for improving the accuracy of
the results when it is required. We discuss both cases of polynomial and piecewise
low order polynomial approximations, and assume that a reasonable initial value
sz\o) is given. We select as convergence criterion:

+1 m
™) = 10 ™l < ellu ™|

(m+1) (m)
||u? lloo — |lu®

oo — oo < €llu2™loo

(41)

“+1
ud™* ) w0

(m) (m)
[lu?™] ™|

lo < €

where the superscripts d and m refer respectively to the d — th component of the
solution at each node and to the m — th iteration, and ¢ is a specified tolerance.
As indicated by equations (41), we independently monitor the convergence of
each of the d components of the displacement field. This is in order to avoid
that potential important relative errors in a component of the solution whose
magnitude is relatively small — for example, the z displacement of a cantilever
beam with a load parallel to the y direction, are masked by an otherwise perfect
convergence for a component of the solution whose magnitude is relatively large
— for example, the y displacement.

5.1. Polynomzial approzimation

Let Nf\m) and p(™) = Ni"o /d — 1 denote respectively the number of discrete
Lagrange multipliers and the degree of the polynomial approximation of A at
iteration m. Suppose that for N ,\m) the above convergence criterion (41) is not
met. A simple iterative refinement procedure consists in introducing at iteration
m + 1 an additional discrete Lagrange multiplier by considering a polynomial

approximation A of order p(™+1) = p{™ + 1. This entails the generation of the
: : pmtl) :
constraint matrices B , J = 1,2 and therefore of the element level matrices

pr(m+1)(¢)

J
lBP(m-H) (e)
2

, 1 =1,...,q. A careful examination of equations (15-17) reveals that

m) (e)
can be computed very fast by updating ’Bf( " s following;:

IBI?("'“)(C) _ [lBg(m)(C)

’ ! Br*™ 1 (42)

J plm) 1%
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where

(m) (m)
LB = ([ NI I (43)
r;le

Therefore, if at each iteration m + 1 an additional Lagrange multiplier is intro-
duced, the re-generation of the constraint matrices requires only the evaluation
for each interface element of the integral [;. (., N;s?™+16T', and the re-generation
of the interface system Fj requires only the pre/post multiplication of the sub-
domain flexibilities with these matrices. Given that Nf\m) /d << np, these mul-
tiplications are not expensive. In particular, they are much more economical
than those corresponding to a typical conjugate gradient iteration for the case
Ny = n;. The introduction at iteration m + 1 of more than one discrete Lagrange
multiplier is handled exactly in the same manner.

5.2. Piecewise low order polynomial approzimation

Let I‘j‘i(m), k=0,.., Nf\m)/d—2 denote the partition P{™ of the interface bound-
ary 'y at iteration m:

I"j(m) _ [Sim)’ si'.'l)l] k :0,...,N£"')/d—2 (44)

If at iteration m + 1 an additional discrete Lagrange multiplier is introduced, say

in the subinterval ¥’ (m), the resulting partition P{™*+!) becomes:

F,;(m+1) = [s{mHD, SlmED k=0,.,N™/d-1 (45)
where
{m+1) (m) A L *
Sk = S k<k (46)
Sgcm+l) = ‘S(L'Z)l E>k*+1

It can be easily shown that the regeneration at iteration m + 1 of the constraint
matrices BT and B,f involves basically recomputing the coefficients cl;, i =

1,...,4, § = 1,...,d of the polynomial expressions (32), only for those interface
m—+1 «(m .. m+1
—1( )’ or I-,;; ( +1), or r}} +1¢ )

b

elements which intersect I'; inside I"f,"
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. +1 . .
I"} +2{m ). However, a refinement procedure for this case should also specify

the location where an additional discrete Lagrange multiplier is to be introduced
during the following iteration, — that is to define 35:."*'1). In this work, we choose
fo that purpose the point of I'; where ||[u(™+V || —||[u(™||oo/||u{™}|c and/or the
violation of static equilibrium prior to the averaging and improvement procedures
(23) and (25) are the largest. The introduction at iteration m + 1 of more than

one discrete Lagrange multiplier is handled exactly in the same manner.

6. Validation and Performance Evaluation

Ideally, the accuracy of the proposed hybrid method for a given value of N,
should be assessed by comparing its generated results to the exact (analytical)
solution of the continuum or lattice problem of interest. However, the latter
solution is seldom available. Therefore, we select as reference the conventional
finite element solution of the problem — that is, the solution that is obtained
without the introduction of a hybrid variational principle, and refer to it as the
exact solution.

In this section, we validate first the essence of this paper with simple two-
subdomain structural problems. For each example, we apply the iterative refine-
ment procedures outlined in Section 5 to generate numerical results corresponding
to various numbers of Lagrange multipliers, Ny. We report on only the computed
solutions associated with the interface boundary I';. This is because whenever
these converge to the reference solution, the improvement procedure (25) guar-
antees that the computed subdomain displacement and stress fields also converge
to their reference solution. All examples indicate that a number of traction forces
that is only a small fraction of the size of the discrete interface boundary I'; are
required to “glue” the incomplete subdomain solutions. Next, we assess the per-
formance of the developed computational hybrid algorithm with the large-scale
finite element static analysis of the Solid Rocket Booster (SRB) on a 4 processor
CRAY Y-MP; we demonstrate that for that problem, our algorithm outperforms
the fastest of the available parallel skyline solvers.
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6.1 Validation

First, we consider the static analysis of an unsymmetric beam that is clamped at
both ends and subjected to both a horizontal and vertical point loadings. The
beam is discretized using 4-node plane stress elements (¢ = 4) with two degrees
of freedom per node (d = 2). The finite element mesh is decomposed into 2
subdomains, each with 108 interior degrees of freedom. For this problem, the size
of interface problem is n; = 18.

Y

'“"

% "‘(“ "'-,' “V “"' “’ “‘"&'

FIG. 4 Two-subdomain decomposition
of an unsymmetric clamped-clamped beam



The interface tractions are approximated successively with polynomials of order
zero, one, two, and three, — that is, Ny = 2,4,6, and 8. The generated hybrid
solutions are reported in Figures (5-6) for both the horizontal and vertical dis-
placement fields along the interface boundary I'y. For Ny = 6, both displacement

fields are shown to be in excellent agreement with the exact solution.

FIG. 5 Unsymmetric beam problem: predicted horizontal displacement field
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FIG. 6 Unsymmetric beam problem: predicted vertical displacement field



Next, we analyze an unsymmetric planar truss structure (¢ =2, d =2) with
312 degrees of freedom. The unsymmetry is induced by the members material
properties which are different on both sides of the axis of geometrical symmetry.
The truss structure is also loaded in both directions as shown in Figure 7. The
lattice mesh is decomposed in two subdomains, each with 144 internal degrees of
freedom. The interface boundary Ty is depicted in Figure 7.

{3
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FIG. 7 Two-subdomain decomposition of an unsymmetric fized-fized truss

The size of the interface problem for the above structure is rather small (n; =
24), so that polynomial approximations for the Lagrange multiplier functions
are considered again. The predicted vertical and horizontal displacements using
the tearing hybrid method are reported in Figures (8-9). Adequate accuracy is
achieved for N = 6, which corresponds to only 25% of the number of degrees of
freedom along I';.
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Finally, we select to illustrate the use of piecewise low order polynomials for
the approximation of the interface tractions with the static analysis of a cantilever
beam. A finite element mesh with 300 degrees of freedom is constructed using 4-
node plane stress elements (g = 4) with two degrees of freedom per node (d = 2).
It is partitioned in two non-floating subdomains, each with a minimum bandwidth
(Fig. 10). The horizontal slicing adopted for this problem avoids the subdomain
singularity but produces a larger interface than a vertical slicing. The size of the
interface problem is 60.

FIG. 10 Two-subdomain decomposition of cantilever beam

An intitial partition P9 of T'; is defined using four points (Vx = 8), of which
three are clustered towards the free end where the vertical force is applied. The
iterative refinement procedure of Section 5 introduces an additional point in the
subinterval that is closest to the load (Fig. 11).
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FIG. 11 Successive partitionings of I'y
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Within three iterations, the tearing hybrid algorithm is shown to converge
towards the exact.solution (Fig. 12-13). Note however that it took only two
iterations for the vertical displacement to converge. This example illustrates the
need for a component-by-component convergence criterion as in (41).

300 GLOBAL D. 0. F. - 6@ INTERFACE D. 0. F.

. 90081 —T
.0001 - i

~\ \\
.0005 s \
. 0009 I N ;
.0013 AN \\ f
.8016 S X, /

.0020 ‘\‘ \

.0024
\ﬂ\ C
.8027 i R/

\ /ﬁ
.0031 7

.0035 Mo
@ 2 5 8 11 14 17 28 23 28 29

Curvilinear abscissa
exact ———— S5-point spline

--------- 4-point spline------ 6-point spline

F1G. 12 Cantilever problem: predicted horizontal displacement field

30



300 GLOBAL D. 0. F. - 60 INTERFACE D. 0. F.

-1.84 -3 —
'\
-0.07 N
~
~0.14 s
-0.21 ™~

-0.4¢2 N
-0.49 \\

~8.83 ™
N

% c 5 8 11 14 17 20 23 26 289

Curvilinear abscissa

exact - S-point spline.
-------- 4-point spline

FIG. 13 Cantilever problem: predicted vertical displacement field

For the above problem, Figure 14 compares the condition numbers of BlB? for
various values of Ny, when the traction forces are approximated with polynomials
and piecewise low order polynomials. The advantage of the latter approximation
is clearly demonstrated.

31



300 GLOBAL D. 0. F. - 60 INTERFACE D. O.

F.

Number of discrete Lagrange multipliers

O polynomial 0 S-point spline
& 4-point spline

FIG. 14 Conditioning of the constraint matrices

AMwICZ ZOH—-IHUZZOIC)



6.2 Performance evaluation

Here we report on the performance of the proposed computational algorithm
for a large-scale structural problem. The corresponding parallel/vector code is
implemented on a CRAY Y-MP multiprocessor. Even though this system accom-
modates up to 8 processors, only 4 CPUs were available to us.

We consider the solution of the system of equations arising in the linear static
analysis of the SRB when loaded by internal pressure in its Solid Rocket Motor
(SRM) subsystem. The discretized SRB model has 10,453 elements, 9,206 nodes
and 54,870 degrees of freedom (FIG. 15). After node-renumbering, the average
profile bandwidth is 310. The finite element mesh is decomposed in 4 subdo-
mains, each with approximately 2,613 elements. The decomposition is carried
out along the longitudinal direction of the structure, using one-way separators
only. This restriction will be removed in future developments. The optimized
average profile bandwidth for each of the 4 subdomains is 91. Each of the 4 sep-
arators include approximately 920 degrees of freedom. The size of the interface
problem is 3692. The tolerance ¢ for the convergence criterion (41) is set to 107*.
Given the size of the interface problem, a rather large number of discrete Lagrange
multipliers is anticipated. Therefore, the piecewise low order polynomial approx-
imation switch is activated and the preconditioned projected conjugate gradient
algorithm described in reference [1] is invoked for the solution of the interface
problem. The hybrid algorithm achieves convergence after 3 iterative refinement
steps with Ny = 283. The computed results are compared with those generated
by a parallel/vector skyline solver for validation. Table 1 below reports the CPU
timings for the proposed algorithm and compares them with those of the fastest
solutions that have been published for this problem (Storaasli, Nguyen and Agar-
wal [9], Farhat [10]). Clearly, the proposed algorithm is shown to be significantly
faster in both serial and parallel environments.
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FIG. 15 Finite element discretization of the SRB

TABLE 1. Equation solving on the CRAY Y-MP

SRB structural model - 54,870 d.o.f.

Number of processors CPU time CPU time
Skyline solver  Tearing Hybrid Algorithm
1 39 secs 20.18 secs
2 19.79 secs 10.21 secs
4 10 secs 5.19 secs
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7. Conclusion

Recently, Farhat and Roux [1] have developed a domain decomposition algorithm
based on a hybrid variational principle, for the parallel finite element solution of
self-adjoint elliptic partial differential equations. First, the spatial domain was
partitioned into a set of totally disconnected subdomains and an incomplete fi-
nite element solution was computed in each of these subdomains. Next, a set
of Lagrange multipliers representing surface tractions were introduced at each
degree of freedom of the discretized binding interface in order to enforce compat-
ibility constraints between the independent local finite element approximations.
For structural and mechanical problems, the resulting algorithm was shown to
outperform the conventional method of substructures, especially on parallel pro-
cessors. In this work, we have investigated the use of a much lower number of
Lagrange multipliers, iVy, for interconnecting the incomplete field finite element
solutions. For that purpose, we have derived finite element procedures for both
global and piecewise low order polynomial approximations of the interface trac-
tions. Through simple structural examples, we have shown that a high accuracy
can be reached with a value of N that is only a small percentage of the total
number of interface degrees of freedom. With this modification, the performance
of the hybrid algorithm presented in [1] is drastically improved since it deals with
a much smaller interface or reduced system. Even though we have addressed
only the two-subdomain decomposition, the procedure is readily applicable to
many-subdomain problems where only one-way separators are used for the mesh
decomposition. We have illustrated the latter case with the large-scale static
analysis of the Solid Rocket Booster (SRB) on a 4 processor CRAY Y-MP. For
that problem, the modified hybrid algorithm is shown to outperform parallel sky-
line solvers in both serial and parallel environments. Future work will focus on
the case of arbitrary mesh decompositions and on time dependent problems.

Appendix A. Piecewise-cubic Bessel interpolation

Let T% k& = 0,...,.Vy/d — 2 denote a partition P of the interface boundary I';
defined as:

T'Y = [sk, Sk+1) k=0,..,Ny/d—2

35



Within each subinterval T'¥, d cubic polynomials are defined as:

AH(s) = elp+ehuls —si) + chils — s1)® + chils — s)®

k
:\i(s) Cik + Cgk(s —3sk)+ Cgk(s - Sk)2 + Cik(s - sk)3

M(s) = cfi +efuls — k) +cipls —su)? + f4(s — s)?

The coefficients c{k, t=1,..,4,j =1,...,d are determined by imposing:

:\{(Sk) =AJ 3 :\{(Sk+1) = X;;+l
d)’ d\J di d\
"(Sk) = oK) i — —E(sk41) = 5 (Sk+1)
d/\f B2t (N1 — M) + AA,:“-(/\k = Ag-1)
-d_(SL) - Agsk

E=0,...,Ny=2
J =1,...,d
where Asy and A;sy are defined as:
ASip = Sk41 — Sk
Aasp = Sk4+1 — Sk—1
The solution of the above equations yield:

e = )‘i

che = EarMy + MM+ Al

Cgk = ﬁskf\{-+2 + ’731:/\14-1 + (kAL + V3k’\{<—1
Cik = §4k/\{-+2 + 7741:/\1;.,.1 + C4k)\i + V4k/\i_1
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